
Contact : MA Jiaxin jiaxin.ma@sinicx.com

A Machine Learning System that Adaptively  
Aggregates Knowledge from Multiple Models
MA Jiaxin

As a machine learning framework, decentralized learning aims to address the difficulties of data collection and 
annotation by breaking down and assigning these tasks to a group of clients to utilize their own data resources. 
Federated learning is a conventional approach of decentralized learning, but it is not suitable to deal with cases 
when the client model architectures or data distributions are diverse. This article introduces one of our published 
research results, which is a method called Decentralized Learning via Adaptive Distillation (DLAD). As a method 
based on knowledge distillation, it learns a model by aggregating and imitating the client models’ outputs, without 
requiring identical client-model architecture. Moreover, this method casts adaptive aggregation weights to different 
clients, to give priorities to learn from client models with higher confidence. This approach is especially useful for 
the non-IID (Independent and Identically Distributed) data. We have conducted evaluation experiments on multi-
ple public datasets and demonstrated the effectiveness of this method.

複数のモデルから適応的に知識を統合する 
新たな機械学習スキーム
馬 家昕

　非集中学習は、データ収集やアノテーションのコストの高さという課題に対し、これらのタスクを分解してクラ
イアント（ローカル）に割り当てることで、クライアント独自のデータリソースを活用する機械学習の枠組みであ
る。連合学習は従来からの非集中学習の方策の一つだが、各クライアントのモデル構造やデータ分布が多様な場合
には適さない。本稿では、適応的蒸留による非集中学習（Decentralized Learning via Adaptive Distillation: DLAD）と
いう手法を解説する。この手法では、知識蒸留に基づいてクライアントモデルの出力を集約し、模倣することによ
り、不均一なクライアントモデルに対する非集中学習を可能にする。この際、各クライアントのデータが独立同分
布とならない状況にも対応するため、適応的に学習の重みを求める。我々は、多数の公開データセットによって評
価実験を行い、提案手法の効果を確認した。

1. Introduction
The content of this article is based on our recent paper named 
“Adaptive Distillation for Decentralized Learning from Hetero-
geneous Clients”1). In this article, the author would like to pro-
vide a reader-friendly explanation of the original paper. The 
purpose is not only to explain the details of technology, but 
more importantly, to give readers an insight that how to use the 
related technology to solve real-world problems, since knowl-
edge deserves to be understood and utilized, to contribute to the 
business, and the world.
　In current days, machine learning is undoubtedly a promising 

technology not only in academic research but also in enter-
prises. The most common difficulty to deploy machine learning 
in a real-world project is related to data, which is usually two-
fold. First, deploying machine learning can be costly due to data 
collection. Some sensitive data, such as life logging videos, and 
medical data, that their owners wish to keep private, are hardly 
accessible. Second, deploying machine learning can be costly 
due to data annotation. Supervised machine learning (the most 
commonly used machine learning algorithm) requires that to 
learn a model, training data must be annotated with ground truth 
labels. Depending on the difficulties of tasks, annotation some-
times needs certain levels of professional know-how (e.g., a 
doctorʼs diagnosis), and thus can be extremely expensive.

OMRON TECHNICS　Vol.53 No.2（通巻 165 号）2021　　2. 人から学ぶ 人のように学ぶ

46 (194)



MA Jiaxin A Machine Learning System that Adaptively Aggregates Knowledge from Multiple Models

　So, is there a method to alleviate the cost of data collection 
or data annotation? One promising solution is Decentralized 
Learning, which means to put the data collection and data 
annotation processes on the client side. Here, “client” usually 
means some institutions, companies, or end-users who are sup-
posed to conduct data collection and data annotation as their 
daily behaviors (for comparison, we call the other side “server 
side”). For example, Google developed a machine learning 
model to predict the next word of the keyboard input2), and the 
data collection and data annotation are all performed by smart-
phone usersʼ daily keyboard input. It is important to note that, 
during the above process, end-users train their own prediction 
models on their devices, and only transfer model weights with 
Google, but not any sensitive data they have input using their 
smartphone keyboards. This decentralized learning framework is 
called Federated Learning (FL)3,4).
　To better understand the advantages of decentralized learning, 
we give another example. Let us assume that OMRON is about 
to develop a new cardiac diagnostic device. It can help early 
detection of heart diseases by reading and analyzing usersʼ vital 
signs. Usually, the development of such a device would face a 
high hurdle because vital signs are sensitive and private data, 
and annotations need expertise from doctors. With FL, OMRON 
just needs to deploy the copies of their machine learning model 
to different hospitals, and get the models trained with the daily 
medical data. At the hospital (client) side, operators only need 
to input patient data (vital signs, profiles, etc.) and correspond-
ing diagnosis into the model. Since the model neither uploads 
any private data to the OMRON side nor requires doctors to 
make additional diagnoses beyond their daily work, the diffi-
culty of development is greatly reduced.
　From the above example, FL is a promising decentralized 
learning framework and should be encouraged to use in prac-
tice. However, some limitations of FL still exist, for example:

1. FL requires client model architectures to be identical. Usu-
ally, it is applicable to just deploy the same model to all the 
clients. However, this requirement is inconvenient under 
some practical circumstances, such as that, clients may have 
needs of model customization (due to limitation of computa-
tional resources, privacy policies, performance bias, etc.); 
clients may already have their own trained models and we 
want to directly use them, and so on.

2. FL requires frequent data communication during the model 
training process. Although such data communication does 
not involve private data, the data communication itself also 
brings limitations and concerns, such as network qualities, 
securities, and so on. Also, if different clients have different 

communication conditions, it will be a problem to balance 
the training process among all the clients. Extra efforts are 
needed to improve the communication efficiency5,6).

　In this article, the author would like to introduce another 
decentralized learning framework that is based on knowledge 
distillation (KD). It can solve the above issues that FL is not 
good at. Moreover, the proposed method uses an improved 
weight aggregation strategy to deal with the non-IIDness prob-
lem, which will be explained later. One should note that the 
KD-based decentralized learning framework is not necessarily 
superior to FL-based. One should be able to identify which 
framework is more suitable for their practical applications.

2. Method
2.1 What is knowledge distillation?
Knowledge distillation7) is a method that allows one trained 
model (the source model) to “teach” another new model (the 
target model). In other words, it allows a new model to imitate 
the output of an existed model, without significant loss of per-
formance. The original purpose of KD is mainly on model com-
pression, which means that, usually, the source model is a large 
(deep) model, and the target model is a small (shallow) model 
which is less expensive to be deployed in practice.
　The reason a small model can approximate a large model in 
its performance is that, firstly, a large model usually has some 
excessive capacity or power which is not fully utilized; sec-
ondly and more importantly, a target model can benefit from 
learning “soft labels” from a source model. We will use an 
example to explain the latter one.
　Consider an image classification task, where one of the 
images illustrates a cat playing with a mouse (see Fig. 1). Usu-
ally, the label (ground truth) will be “cat” only, since the cat 
occupies the main body of the image (it is theoretically possible 
but too ambiguous and inefficient to annotate this image as “cat 
and mouse”). In this way, the information of the mouse will be 
missing from the true label, and thus the machine learning 
model that learns from the true label will only learn “this image 
is showing a cat but nothing else”, which is actually not ideal.
　On the contrary, in a KD scenario, the source model provides 
“soft labels” rather than true labels. Assume that the source 
model is well-trained (i.e., it can at least recognize cat and 
mouse precisely). Then in this case the model may produce a 
classification output like “70% cat, 30% mouse”. Unlike a true 
label that only represents one possibility, a soft label will repre-
sent all the possibilities in ratios. As a result, it can handle the 
cases such as “A and B are in the same image” or “this object 
looks like both A and B”, where the true label cannot. In KD, 
while the target model learns from soft labels (and from true 

(195) 47



labels, at the same time), it has been proved that it can perform 
better compared with only learning from true labels.

Fig. 1 Should a machine learning model classify this image as a cat or a mouse?

2.2 How does knowledge distillation benefit decentralized 
learning?

As mentioned previously, the original usage of KD is mainly 
about model compression, but KD can also benefit decentralized 
learning. In a KD-based decentralized learning framework, the 
client side owns source models, and the server side owns a tar-
get model. The client side trains source models with their pri-
vate data and annotations, while the server side needs to collect 
its own data and input them to source models to get output (soft 
labels). After that, the server side trains the target model with its 
own data, and the corresponding soft labels which are aggre-
gated from all the clients.
　KD-based frameworks do not have the limitations of FL-
based frameworks mentioned in the previous section. First, KD 
does not aggregate model weights but soft labels, so there is no 
need to keep model architectures identical. Any client or server 
can have a unique model. Second, there is no frequent data 
communication during the training process. Actually, the data 
communication only occurs twice: once for the server sending 
data to the clients, and the other for the clients sending soft 
labels to the server. The training processes (both on the client 
side and the server side) can be totally off-line.
　KD also has its own limitations. During the above process, 
there is no data transfer from the client side to the server side, 
so the data privacy of the clients is protected, however, there is 
data transfer from the server side to the client side, which 
means the server side still need to collect enough data. Also, 
there is no need to annotate the server-side data by human 
labor, instead, the annotation is done by client-side models. 
Asking the clients to run their models may still incur costs. 
Compared with FL, requiring data collection may be a main 
limitation of KD, however, for some types of tasks, it is not so 
difficult to get unlabeled data, while sometimes the model het-
erogeneity can be a critical advantage.

2.3 How does our work differ from traditional knowledge 
distillation?

When we distill knowledge from multiple sources, there is no 
guarantee that all the sources provide outputs of the same qual-
ity. Different sources are likely to have different confidences 
towards different categories of samples. Here, the confidence 
may be due to many factors, for example, model architecture, 
annotation qualities, number of training data samples, and so on. 
Among them, the number of training data samples (on certain 
categories) is a very common factor caused by data distribution.
　Traditional decentralized learnings, both FL-based and KD-
based, aggregate the output (model weights or soft labels) 
evenly from multiple clients. It means that it does not distin-
guish which client gives a more trustable output and train with a 
bias accordingly. It is fine for IID (Independent and Identically 
Distributed) data. But in most cases, real-world data are non-
IID. For example, patient data distribution will be diverse 
depending on regions, seasons, hospital categories, and so on. 
For the case of non-IID data, it is highly possible that some cli-
ents have never seen some categories of data samples during 
their training processes, and thus cannot provide confident out-
puts.
　In our work, we proposed an improved KD method, Decen-
tralized Learning via Adaptive Distillation (DLAD). It allows 
the target model to selectively learn from source models, which 
is an effective solution to non-IID data.

2.4 The details of DLAD
In our distillation process, for each data sample sent from the 
server to the clients, we not only expect to get an output from 
each client model but also want each client model can provide a 
confidence estimation, which represents “how confident am I to 
correctly classify this sample”. In our scenario, this condition is 
simplified to “how familiar is this sample to me” to address the 
issue of non-IIDness. It is rather tricky to let client models 
report their familiarity or confidence. Here we introduce our 
implementation as follows.
　Fig. 2 shows the overview of the proposed DLAD frame-
work. In the figure, D1 … DN represents the data owned by cli-
ents, M1 … MN (in black) represent the client-side models and 
orange ones are their binary copies (explained later), Ddist repre-
sents the data collected by the server side, and M represents the 
model owned by the server side.

OMRON TECHNICS　Vol.53 No.2（通巻 165 号）2021　　2. 人から学ぶ 人のように学ぶ

48 (196)



MA Jiaxin A Machine Learning System that Adaptively Aggregates Knowledge from Multiple Models

The training of DLAD has three steps.
　Step 1, training client models. Clients train models M1 … 
MN with their own data D1 … DN. (The models can be either 
provided by the server or owned by the clients themselves.)
　Step 2, training binary models. The server sends Ddist to all 
the clients. Each client duplicates its trained client model 
(including model weights) and swaps the modelʼs final classifi-
cation layer with a binary classification layer (with sigmoid 
activation to ensure the output is [0,1]). We call these new mod-
els binary models (Mb1 … MbN). Then the binary models are 
trained with both Ddist and Di (i = 1 … N), while Ddist will have 
labels of 0s, and Di will have labels of 1s.
　Step 3, training the server model. The clients run their 
models (both Mi and Mbi) with Ddist and send the outputs to the 
server (where the output of Mi becomes soft labels, and the out-
put of Mbi becomes aggregation weights). The server aggregates 
these outputs (into aggregated soft labels) and then uses these 
aggregated outputs and Ddist to train model M.

　We can see that the data communication between the server 
and the clients only occurs at the beginning of each step. The 
model training processes can be totally off-line.
　The most important part of DLAD is how to design the con-
fidence of each model towards a certain sample, as well as the 
aggregation method. In our implementation, we define the con-
fidence of client i towards sample x as Ci (x) = Mbi (x). The con-
cept of designing Ci (x) is that Ci (x) should become larger if the 

model Mbi recognizes sample x similar to its own data Di and 
becomes smaller otherwise.
　Then, we aggregate Ci (x) from all the clients, to calculate a 
confidence weight for each client, which is

 w x
C x

T

C x
T

i

i

j j

( )
exp

exp
=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Σ
 (1)

wi (x) needs to be normalized across all the clients to ensure that 
it has the same scale. The above equation is equivalent to a 
softmax normalization, with a hyper-parameter T that adjusts the 
smoothness of output. Then the final aggregation result which is 
also the label to train the model M would be

 w x M xi ii
( ) ( )∑  (2)

There are also some limitations of the design of DLAD. First, it 
requires each client to additionally train a model of Mbi. Second, 
it is not always true that the more overlapping between Ddist and 
Di, the higher Mbi (x) is, also, since the structure of Mbi is inher-
ited from Mi, it can be biased according to the difference of 
model architectures. Anyway, to improve this idea, for example, 
we may properly define a distance function to represent the dis-
tance between any new sample x and the dataset Di, and then 
aggregate using Eq. 1. There are many possibilities to define 
this distance function. However, this exploration is not included 
in the current study.

Output 1

Output N

⋮

𝐷𝐷1
(labeled)

𝐷𝐷𝑁𝑁
(labeled)

Client model 𝑀𝑀1

Client model 𝑀𝑀𝑁𝑁

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(unlabeled)

⋮ ⋮

Aggregation 
weight 𝑤𝑤𝑑𝑑

Global model 𝑀𝑀

Global model
outputs

Aggregated 
outputs

lo
ss

Fig. 2 The overview of DLAD

(197) 49



3. Experiments
3.1 Problem setting
To evaluate our method, we use image classification as our task. 
This is a very common task of computer vision problems. In our 
study, we choose three datasets, namely MNIST, CIFAR-10, 
and CINIC-10 for evaluation. MNIST is a handwritten digit 
database, which includes 28×28 pixel grayscale images of sin-
gle digits from 0 to 9. CIFAR-10 and CINIC-10 are both real-
world photo databases, and both include 32×32 color images 
of 10 classes. All of them are commonly used and publicly 
available.
　Note that image classification is a very popular problem in 
machine learning studies. The abundance of public datasets and 
baselines also attracts researchers to evaluate their machine 
learning models on it. However, our proposed method can be 
applied to any classification problem but not limited to com-
puter vision. We hope the readers can have their own idea that 
how to apply this method to the real-world problems that they 
are facing.
　In order to simulate a decentralized learning environment, we 
divided the datasets into client-side data and server-side data. 
Among them, the client-side data is paired with ground truth 
labels, and the server-side data is unlabeled. As in the real 
world, unlabeled data is always much easier to get, we assign a 
larger part of data to server side. Specifically, for MNIST and 
CIFAR-10, among their training sets (60,000 and 50,000 sam-
ples, respectively) we assign 80% samples to server side and 
20% samples to client side. For CINIC-10, the whole validation 
set (90,000 samples) is assigned to server side, and the whole 
training set (90,000 samples) is assigned to client side.
　After that, for each client, its own data Di is created by 
repeatedly and randomly sampling (allowing duplicates) from 
the data assigned to client side, until Di reaches a predetermined 
number of data samples (which is arbitrarily determined as 
6,000 for MNIST, 5,000 for CIFAR-10, and 20,000 for 
CINIC-10). If the data distribution is IID, Di will include data 
of all ten classes. If the data distribution is non-IID, Di will only 
include data of a part of classes. For simplicity, Di is a balanced 
dataset. For example, if Di includes data of six classes, the 
probability of each class being sampled should be 1/6. In a real-
world problem, Di might be unbalanced, but it should not affect 
the performance of DLAD.
　In order to simulate the different levels of non-IIDness 
existed in the real world, we defined one type of IID and three 
types of non-IID data distributions. They are shown in Table 1. 
As either MNIST, CIFAR-10, or CINIC-10 has 10 classes of 
data (noted as c0~c9 in Table 1), for simplicity, when we define 
the data distribution, we assume that the number of clients is a 

multiple of five (client 1~5 have the same data distribution as 
client 6~10, and so on).

　・ IID: all ten classes are accessible to all clients.
　・ Non-IID #1: every two classes are exclusively accessible to 

only one client, e.g., c0 and c1 are accessible to client 1; 
c2 and c3 are accessible to client 2; and so on.

　・ Non-IID #2: c0~c4 are accessible to all clients, and c5, c6, 
c7, c8, c9 are exclusively accessible to only one client 
each.

　・ Non-IID #3: every class is accessible to only two clients 
among five, e.g., c0 is accessible to clients 1 and 2; c1 is 
accessible to clients 1 and 3; and so on.

Table 1 The data distribution setting in our experiment: one IID case and three 
non-IID cases

Client Index 5n+1 5n+2 5n+3 5n+4 5n+5

IID c0~c9 c0~c9 c0~c9 c0~c9 c0~c9

Non-IID #1 c0, c1 c2, c3 c4, c5 c6, c7 c8, c9

Non-IID #2 c0~c4, c5 c0~c4, c6 c0~c4, c7 c0~c4, c8 c0~c4, c9

Non-IID #3 c0, c1, c2, 
c3

c0, c4, c5, 
c6

c1, c4, c7, 
c8

c2, c5, c7, 
c9

c3, c6, c8, 
c9

3.2 Experiment setting
The experiment involves all the three steps of the training pro-
cess that were mentioned in Section 2.4.
　Step 1, training client models. Theoretically speaking, it is 
possible to assign any type of supervised machine learning 
model to each client, e.g., support vector machine, decision tree, 
and so on. In our experiment, though, we tested two deep learn-
ing models: ResNet18 8) and DenseNet 9). The reason for adopt-
ing them is that both models are typical deep learning models 
that are usually seen in papers. We use pre-trained weights (on 
ImageNet) on both ResNet and DenseNet to reduce the neces-
sary training time. Each client model Mi is trained for 50 
epochs with a batch size of 250. Adam optimizer with the 
learning rate of 0.001 is applied (the same below).
　Step 2, training binary models. After client models are 
trained, we duplicate each client model and swap the final layer 
with a binary-output layer to get the binary model Mbi and train 
them for 20 epochs. If the training sample is from Di, we addi-
tionally apply a sample weight of 1.5 to alleviate the effect of 
data imbalance since in our problem setting Di has much fewer 
samples than Ddist (see Section 3.1).
　Step 3, training the server model. The server model is also 
chosen from ResNet and DenseNet, and its initial weights are 
also pre-trained weights on ImageNet. It is trained for 100 
epochs. A temperature parameter T of 0.05 is used for calculat-

OMRON TECHNICS　Vol.53 No.2（通巻 165 号）2021　　2. 人から学ぶ 人のように学ぶ

50 (198)



MA Jiaxin A Machine Learning System that Adaptively Aggregates Knowledge from Multiple Models

ing the weight aggregation as in Eq. 1.
　During all the three training steps, data augmentation is 
applied to the input data to increase the robustness, where the 
following operations are used: rotation (within±20º), shift in 
width, height, and color (within 20%), and horizontal flip.

　We compare the result of standard DLAD with the other two 
baselines. One is simple averaging, where the aggregation 
weight wi (x) is fixed as 1/N (N is the number of clients). The 
other is labeled confidence, which calculates aggregation 
weight in the same manner as DLAD, but instead of letting the 
confidence Ci (x) = Mbi (x), it uses a ground truth label to 
express Ci (x). This ground truth label is equal to the class dis-
tribution probability. For example, for the four distribution cases 
(IID and non-IID #1~3) in Table 1, if sample x belongs to c1, 
Ci (x) is equal to 1/10, 1/2, 1/6, and 1/4, respectively, when i = 
1, and equal to 1/10, 0, 1/6, and 0, respectively, when i = 2. 
The former baseline is the traditional strategy used in most 
(even recently) decentralized learning frameworks10,11), while 
the latter one can be treated as DLAD with ideal values of con-
fidence, which is also a theoretical upper bond of DLAD.

3.3 Experiment results
To evaluate the performance of our proposed method in various 
situations, we conducted three experiments. Their details are 
listed in Table 2. We control the variables of dataset, distribu-
tion, client model architecture, global model architecture, and 
the number of clients. The experimental results are discussed as 
follows.

Table 2 The variables of experiment 1~3

Variable Dataset Distribu-
tion

Client 
model

Global 
model

No. of 
clients

Exp1
MNIST, 

CIFAR-10, 
CINIC-10

IID, NIID 
1~3 ResNet ResNet 10

Exp2 CIFAR-10 NIID 1
ResNet, 

DensNet, 
both

ResNet, 
DenseNet 10

Exp3 CIFAR-10 NIID 1~3
ResNet, 

DensNet, 
both

ResNet 5, 10, 20, 
30

Due to space limitations, we do not quote the complete results 
of experiments 1~3 in this article (they are described in the 
original paper). We will use Fig. 3 as an example (experiment 1 
on CINIC-10) to show how the experiment results look like. In 
Fig. 3, the first 50 epoch is Step 1 which represents the training 
process of 10 client models, and the last 100 epoch is Step 3 
which represents the training (knowledge distillation) process of 
the server model (noted as “global” in the figure). Step 2 is 

unrelated to the image classification task, so it is not shown. In 
Step 1, the black line represents the mean validation accuracy 
while the gray shade represents the area between max and min 
accuracy of all client models. In Step 3, the red line is the accu-
racy of standard DLAD; the green line is the method of simple-
average aggregation; the blue line is DLAD with labeled confi-
dence (they were explained in Section 3.2).

From Fig. 3, we can find the following facts:
　・ For the IID case, since there is no difference in data distri-

bution and model architecture among clients and server, 
the server model is unlikely to be benefited or disturbed by 
any decentralized learning method. Still, the sever model 
converges faster compared with client modes, and its final 
accuracy is a litter higher, which is probably due to the 
effect of soft labels and a larger number of training sam-
ples.

　・ For the three types of non-IID cases, client modelsʼ accura-
cies are obviously low because they only have access to 
two, six, and four classes of training samples, respectively 
(in other words, their performance would be capped at 0.2, 
0.6, and 0.4, respectively). In this situation, simple-aver-
age aggregation (green) played a limited role where it 
helped boost accuracies in non-IID #1 and #3 but lost 
accuracy in non-IID #2. In other words, simple average is 
not suitable for all the non-IID cases. Compared to that, 
DLAD (red) showed its effectiveness as well as stableness 
in all the three non-IID cases. With labeled confidence 
(blue), the performance can be further improved.

　The above results have already shown the usefulness of our 
proposed DLAD method compared to the commonly used sim-
ple-average aggregation. From our other experiment results 
described in the original paper but not shown here, we have 
other observations as follows.

　・ About datasets: The difficulty of tasks is like MNIST < 
CIFAR-10 < CINIC-10, so their accuracies decrease 
accordingly. Anyway, DLAD showed no abnormal behav-
ior on all three datasets.

　・ About model architectures: In about half experiments, 
using a combination of ResNet and DenseNet as client 
models gave better results in server model performance, 
compared with using identical architecture (ResNet or 
DenseNet only). Our experiments only tested two model 
architectures, so it might be not enough to prove that 
diversity in client model architectures necessarily benefits 
DLAD results. But still, allowing customization of client 

(199) 51



models without harming the overall performance will be a 
great plus for real-world problems.

　・ About the number of clients: The performance of DLAD 
showed a generally increasing trend with the number of 
clients. It indicates that DLAD is potentialized for large-
scale usage.

　To recap, the effectiveness of DLAD mainly attributes to the 
mechanism of aggregation weights. If we can precisely estimate 
the confidence of client models when doing aggregation, the 
performance of DLAD will be enhanced to approach a high 
level (as DLAD with confidence labels). On the other hand, if 
we cannot estimate the confidence due to some reasons, the per-
formance of DLAD will be downgraded to approach the simple-
average method. One of the possible reasons is the domain dif-
ference between Di and Ddist. For example, assume Di is the data 
of Asian patients and Ddist is the data of American patients, then 
a binary classifier can easily distinguish between the two groups 
no matter their samples have the same label or not. We should 
prevent such a case because no client model will show predom-
inant confidence and thus the aggregation weights will not work 
as intended.

0 20 40 60 80 100 120 140
epoch

0.1

0.2

0.3

0.4

0.5

0.6

va
lid

at
io

n 
ac

cu
ra

cy

CINIC10 IID validation accuracy

Client models
Global (DLAD)
Global (avg.)
Global (labeled)

0 20 40 60 80 100 120 140
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

va
lid

at
io

n 
ac

cu
ra

cy

CINIC10 NIID1 validation accuracy

Client models
Global (DLAD)
Global (avg.)
Global (labeled)

0 20 40 60 80 100 120 140
epoch

0.1

0.2

0.3

0.4

0.5

0.6

va
lid

at
io

n 
ac

cu
ra

cy

CINIC10 NIID2 validation accuracy

Client models
Global (DLAD)
Global (avg.)
Global (labeled)

0 20 40 60 80 100 120 140
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

va
lid

at
io

n 
ac

cu
ra

cy

CINIC10 NIID3 validation accuracy

Client models
Global (DLAD)
Global (avg.)
Global (labeled)

Fig. 3 The result of experiment 1 on CINIC-10

4. Conclusion
Starting from the background of decentralized learning, this 
article introduced the details of DLAD, which is an original 
decentralized learning approach based on knowledge distilla-
tion. The article mainly answered the following questions:

　・ Why is decentralized learning useful?
　・ What are the features of federated learning and knowledge 

distillation?
　・ How does our method solve the non-IID issue?
　・ How is our method implemented?
　・ How do the experimental results of our method compare 

with baselines?

　The author believes that decentralized learning, either FL-
based or KD-based, is a very promising and applicable technol-
ogy for practical use. Hopefully, this article can stimulate read-
ersʼ interest and bring fresh ideas even new business chances to 
their domains.

References
 1） J. Ma, R. Yonetani, and Z. Iqbal, “Adaptive distillation for decen-

tralized learning from heterogeneous clients,” in 2020 25th Int. 
Conf. Pattern Recognit. (ICPR), 2021, pp.7486-7492.

OMRON TECHNICS　Vol.53 No.2（通巻 165 号）2021　　2. 人から学ぶ 人のように学ぶ

52 (200)



MA Jiaxin A Machine Learning System that Adaptively Aggregates Knowledge from Multiple Models

 2） A. Hard et al., “Federated learning for mobile keyboard prediction,” 
arXiv. preprint arXiv:1811.03604, 2018.

 3） H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y 
Arcas. “Communication-efficient learning of deep networks from 
decentralized data,” in Proc. 20th Int. Conf. Artificial Intelligence 
and Statistics, 2017, pp.1273-1282.

 4） K. Bonawitz et al., “Towards federated learning at scale: System 
design,” arXiv. preprint arXiv:1902.01046, 2019.

 5） T. Nishio and R. Yonetani, “Client selection for federated learning 
with heterogeneous resources in mobile edge,” in ICC 2019 - 2019 
IEEE Int. Conf. Commun., 2019, pp.1-7.

 6） J. Konečný et al., “Federated learning: Strategies for improving 
communication efficiency,” arXiv. preprint arXiv:1610.05492, 
2016.

 7） G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a 
neural network,” arXiv. preprint arXiv:1503.02531, 2015.

 8） K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image 
recognition,” in Proc. IEEE Conf. Comput. Vision and Pattern 
Recognit., 2016, pp.770-778.

 9） G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf. 
Comput. Vision and Pattern Recognit., 2017, pp.4700-4708.

10） J. H. Ahn, O. Simeone, and J. Kang, “Wireless federated distillation 
for distributed edge learning with heterogeneous data,” in 2019 
IEEE 30th Annu. Int. Symp. Personal, Indoor and Mobile Radio 
Commun. (PIMRC), 2019, pp.1-6.

11） D. Li, and J. Wang, “Fedmd: Heterogenous federated learning via 
model distillation,” arXiv. preprint arXiv:1910.03581, 2019.

About the Authors

MA Jiaxin, Ph.D. (Engineering)

Research Administrative Division
OMRON SINIC X Corporation
Specialty: Biomedical Engineering and 
Machine Learning

The names of products in the text may be trademarks of each company.

(201) 53


