OMRON TECHNICS Vol.57.009EN 2025.7

1. Introduction

In recent years, deep learning technology has found applications
in sensing algorithms. Deep learning offers the advantages of
enhanced accuracy and robustness against noise. The use of
deep learning enables high-precision recognition with automatic
extraction of complex data patterns. It also enables adaptation to
noise-ridden environments and diverse data, allowing for
recognition that is free from noise distraction. Deep learning
sensing has found applications for a variety of purposes, such as
image recognition for autonomous driving vehicles and voice
recognition for smart speakers.

OMRON emphasizes sensing as one of its core technologies
and has developed a diverse range of sensor products. Besides
image sensors and other complex products that handle large-
capacity signals, many simple sensor products handle simple one-
dimensional signals. Simple sensor products cannot have a high
price tag. This cost constraint places limits on the hardware,
making it challenging to implement large-scale algorithms, such
as those used in deep learning, on these products.

On the other hand, simple sensor products are also always
expected to provide more accurate recognition and higher noise
adaptation. Therefore, we conducted a feasibility study to
further improve sensing accuracy at low cost by integrating
deep learning into sensors that handle simple one-dimensional
signals.

Deep learning consists of two phases: training and inference.
Generally, a training function is based on a more complex

algorithm than an inference function and requires high memory

Contact : KOGAWARA Toru toru.kogawara@omron.com

Feasibility Study for Embedded Al Using
TensorFlow Lite for Microcontrollers

KOGAWARA Toru and WATANABE Yasuhisa

In recent years, deep learning algorithms have been applied to sensing and are contributing to the enhancement of
high-precision devices, such as image sensors. This study aims to apply deep learning algorithms to simple
sensors that handle one-dimensional signals with the goal of improving accuracy. Because of cost constraints to
realize lower product prices, it is challenging to implement large-scale algorithms into simple sensors; however,
we aim to achieve this by utilizing embedded deep learning platforms and applying model optimization
techniques. In this paper, we use a blood pressure monitor as a practical example of a simple sensor. First, we
chose a deep learning platform, and then we described the method for integrating a pretrained model into the
blood pressure monitor as well as the techniques for model optimization. Finally, we evaluated the ROM and

RAM volumes, accuracy, and execution time, demonstrating the feasibility of the proposed method.

capacity and computational complexity. Considering the
severity of hardware constraints, we initiated the feasibility
study by installing only the inference function on the sensor.
Accordingly, our feasibility study proceeded as follows:
developing and training a deep learning model in the algorithm
development environment, then installing the model in the
sensor, and running it to perform measurement and inference.
Fig. 1 shows the structure of the deep learning sensing

development explored herein.

Da—tabG_Sé Measurement
~ for training / Target / / Result /

z | | :
Deep Learning ‘ e Deep Learning
model model
() /D-?;':LDF I Inference
Platform for Platform for
DL development DL execution
DL Development Embedded
Environment \ Environment)

Fig. 1 Deep learning sensing development explored herein

The rest of this paper proceeds as follows: Section 2 describes
the deep learning development and execution platforms available
and then outlines the selections made. Section 3 explains the
method of converting the deep learning model developed in
the development environment for use in the sensor-embedded
environment, followed by the method of compressing the model.
Section 4 presents an example of implementation into a blood

pressure monitor (sphygmomanometer), along with the results

KOGAWARA Toru et al.

achieved for such parameters as hardware resource usage,
runtime, and accuracy to evaluate our proposed method. Fig. 2
shows the flow of these steps. The numbers such as “2.1” found
in the balloons in Fig. 2 correspond to the section and subsection

numbers in this paper.

Deep Learning model
(development platform)

3.1 Convert model format

Deep Learning model
(execution platform)

3.2 Countermeasure for

unsupported operationg - EA e

Platform for
DL execution

2.1 Choose platform

2.2 Port to target envirionment

Deep Learning model
(supported operations) /

s

Deep Learning model
(optimized)

Fig. 2 Flow of our feasibility study

2. Platform

Deep learning algorithm development starts with the selection
of a deep learning platform and then proceeds to describe and
train a model so that it can run on that platform. Running the
developed model in an embedded environment requires another

platform compatible with the embedded environment.

2.1 Deep learning development platform
Table 1 explains actual examples of platforms for developing

deep learning algorithms:

Table 1 Representative deep learning development platforms

Platform name ‘ Features

An open-source library developed by Facebook. One of
the representative deep learning development platforms.
Characterized to allow intuitive modeling and widely used
in academic research.

PyTorch

An open-source library developed by Google. One of the
representative deep learning development platforms.
There is also a platform called Keras, which is a
TensorFlow variant equipped with a high-level API.
Numerous peripheral tools are available for model
deployment, management, and other purposes.

TensorFlow (Keras)

TensorFlow Lite
(hereinafter TFLite

A light version of TensorFlow. Optimized for mobile edge
devices. TFLite supports a subset of TensorFlow

for short) operations. Renamed LiteRT in Sept. 2024.
An open-source deep learning platform developed by
TVM Apache. TVM can generate codes optimized for different

hardware platforms.

We adopted PyTorch, valuing its convenience in model

building and training.

2.2 Embedded environment platform
We investigated and selected platforms available for running

deep learning algorithm models in embedded environments. Our

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

objective was to integrate deep learning into a simple sensor.
Considering that the target of our intended implementation
example was a blood pressure monitor, we used the following

two selection criteria:

* Simple sensors are tightly cost-constrained design-wise and,
as hardware, should be selectable with less strict constraints.
* The platform should work OK even with a small-scale
microcontroller that cannot be installed with a high-

functionality OS, such as Linux.

Table 2 shows the results of investigating platforms for the

above criteria:

Table 2 Investigation results on platforms for embedded use

Platform name ‘ Features

A light open-source library obtained by further
compression of TFLite and compressed enough to run
even on embedded microcontrollers. TFLM assumes even
microcontrollers with an available memory size of several
kilobytes. Its supported operations are a further subset of
TFLite operations. It provides a model execution function
only, without a model retraining function.

TensorFlow Lite for
Microcontrollers
(hereinafter TFLM
for short)

An open-source library to run TVM models on embedded
microcontrollers. microTVM assumes even non-OS
installed microcontrollers. It is still under development
and likely to undergo major modifications.

microTVM

Edge Impulse's commercial solution. It encompasses a
comprehensive range of functions from model
development and training to deployment on embedded
devices. Its outputs can be generated as C language
source code for integration into other software.

Edge Impulse

A free plug-in for STMicro’'s microcontroller STM32 series
integrated development environment. It imports and
converts models developed on other platforms to efficient
C language code. It provides a model execution function
only.

STM32
X-CUBE-AI

Two out of the four platforms, microTVM and TFLM, meet
the selection criteria given above. However, the possibility
exists that microTVM may undergo major modifications, and
the results of our feasibility study may not be fully utilized in

future use. Hence, we selected TFLM.

2.3 Target selection
Technical challenges were expected when proceeding directly to
implementation into small-scale hardware, the ultimate
objective. Therefore, from among microcontroller families that
vary in size from small to large, we picked and used those with
relatively large-scale hardware to explore implementation. We
first achieved successful implementation in large-scale
microcontrollers and then considered compression for
installation in small-scale microcontrollers to simplify our
feasibility study.

From among the STM32 family, which features a wide range
of variations, we selected the STM32F7691-DISCO evaluation

KOGAWARA Toru et al.

board. This board is equipped with a comparatively high-level
microcontroller, ranked high in those available in the STM32
family. Provided with an external flash memory and an
SDRAM, in addition to the microcontroller’s internal memory, it
can be expected to work even before being optimized for the
Table 3

specifications for the selected target:

embedded environment. shows the detailed

Table 3 Specifications for the implementation target

Item ‘ Specification
STM32F7691-DISCO

STM32F769NIH6

Board name

Microcontroller

CPU core Arm Cortex-M7, 216 MHz
Internal Flash memory 2 MB Total ROM size
External Flash memory 64 MB 66 MB
Internal RAM 512 kB Total RAM size
External SDRAM 16 MB 16.5 MB

2.4 Porting execution
As mentioned above, we adopted TFLM. However, TFLM is
distributed in source code form and must be compiled and built
to suit the user’s environment. For our feasibility study, we
rebuilt the TFLM code into a static library for Cortex-M7 and
used it with static linkage to the application. Fig. 3 shows the
software configuration for using the TFLM library.

The TFLM library functions as an interpreter of models in
TFLite format, translating model descriptions consecutively to

perform computations layer by layer.

(Software on the Embedded Microcontroller)

call

> TFLM

Application Library

interpreting l

DL model
in TFLite format

Fig. 3 Software configuration for using the TFLM library

3. Models

Multiple expression formats exist for deep learning algorithm
models. A single platform often supports multiple model
formats. Moreover, tools exist for the interconversion of model

formats.

3.1 Selection of the model format and conversion tool for use
The deep learning model we used was developed on PyTorch.
Running this model on TFLM required converting the model

format to a compatible one.

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

3.1.1 Model formats

Table 4 lists representative deep learning model formats:

Table 4 Representative deep learning model formats

Platform
Features
name
Information of the model developed on PyTorch. While the
PyTorch Lo . .
Saved format and weight information of each layer are stored, interlayer
Model connections are written to the Python program side and, hence,
are usable only on PyTorch.
Abbreviation for Open Neural Network eXchange. An open
ONNX format usable on various platforms. Both model structure and
weight information are stored.
TensorFlow Information of the model developed on TensorFlow. As with
ONNX, both model structure and weight information are stored.
This format has TensorFlow model information replaced with
TFLite TFLite operations and compressed in size through Flatbuffers (a
Google-developed serialization library).

Table 5 shows the correspondence between the above model

formats and the platforms presented in 2.1 and 2.2:

Table 5 Correspondence table between platforms and model formats

e ~__Model format

PyTorch

Saved Model OREIX

TensorFlow TFLite

Platform

PyTorch v v

TensorFlow v
TFLite, TFLM v
VM

Edge Impulse v v v
STM32 X-CUBE-AI

3.1.2 Conversion tool selection

Multiple model format conversion tools are available for
converting deep learning models currently in use. Table 6 shows
the interconvertibility and conversion tools for the four model

formats above:

Table 6 Interconversion table for the four model formats

PyTorch Saved Model (1

ONNX) Ei; @

TensorFlow (3)

TFLite

(1) ONNX import and export supported by PyTorch.

(2) Open-source software onnx2tf”

(3) TensorFlow Lite Converter available from the TensorFlow official site?
(4) onnx-tensorflow available from the ONNX community”

Our purpose right here was to convert the deep learning
model developed on PyTorch to TFLite format. In this case,
either of the following two candidate paths was the option to
take:

KOGAWARA Toru et al.

A) (1) — (2): The model is exported in ONNX format from
PyTorch to onnx2tf for conversion to TFLite format.

B) (1) — (4) — (3): The model is exported in ONNX format
from PyTorch for conversion by onnx-tensorflow to
TensorFlow format and then by TensorFlow Lite

Converter to TFLite format.

Of the two options, onnx-tensorflow used in path B was last
updated in November 2022. As of the time of drafting this
paper (November 2024), there had been no update for almost
two years. In other words, path B had the drawback of being
inaccessible to the latest functions of ONNX and TensorFlow.

Therefore, we selected path A for model conversion.
However, onnx2tf does not support all ONNX operations.
Suppose that an operation unsupported by onnx2tf is used in an
ONNX model. In that case, an error will occur, resulting in a
conversion failure that requires some fixes, the details of which

are provided immediately below in Subsection 3.2.

3.2 Fixes for unsupported operations

As mentioned in Sub-subsection 3.1.2, some ONNX operations
are unsupported by onnx2tf and may not be converted to TFLite
format.

Besides, even after successful conversion to TFLite format,
another challenge awaits: TFLM does not support all TFLite
operations. If any operation unsupported by TFLM is included
in the converted TFLite model, an error will occur during
program execution.

Fig. 4 outlines these problems and their possible fixes,
followed by detailed descriptions. The numbers, such as
“3.2.1,” found in the balloons in Fig. 4 correspond to the sub-

subsection numbers in this paper.

"‘ - PyTorch |

_4{3.22 Modify original modcl]

Model (ONNX) —

[Problem]
Including some ONNX
operations which are
unsupported by onnx2tf

L
"l 3.2.3 Edit ONNX model]

onnx2tf

ﬁ 3.2.1 Software Update]

[Problem]
Including some TFLite
operations which are
unsupported by TFLM

Model (TFLite)

TFLM 3.2.1 Software Update]

Fig. 4 Problems due to unsupported operations and possible fixes

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

3.2.1 Software updating

Both onnx2tf and TFLM are open-source software that is under
active and continuous development. Operations unsupported by
some versions may become executable or be conveted to other
simple operations several months later. Regular reference should
be made to software update information to check for any
change in the status. If a software update can fix the model

conversion or execution issue, it is the best solution.

3.2.2 Modifying operations used in the original model
Suppose that an operation unsupported in a converted model
format is used in the original model. The required improvement
is to modify this operation into one that is supported in the
converted model format.

This sub-subsection presents an example of replacing the
SELU activation function with the ReLU activation function in
a neural network. The ReLU (Rectified Linear Unit) activation
function is commonly used in the intermediate layers of deep
learning. SELU (Scaled Exponential Linear Unit) was devised
as an alternative to ReLU to improve the accuracy of deep
learning. Our target algorithm was also developed using SELU.

Fig. 5 shows the input and output of each activation function:

5
4
3
=® 2
=
51
2 . --- SELU
=1
o ——RelU
-1
-2
-3

5 -4 -3-2-101 2 3 45
Input x

Fig. 5 SELU and ReLU activation functions

As shown in Fig. 5, the SELU and ReLU outputs
significantly differ only when the input x is negative. Because of
this difference, a deep learning model may show slightly higher
accuracy with the SELU activation function than otherwise®.

However, TFLite has no SELU-equivalent operations. Hence,
when converting an ONNX model that uses a SELU operation,
onnx2tf combines multiple operations to generate a model
comparable in computation to SELU (See Fig. 6). The model
produces calculation results equivalent to those of SELU, albeit
with significantly longer computation time and higher memory

usage.

KOGAWARA Toru et al.

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

Our solution is to modify the algorithm to use the ReLU ONNX operations supported by onnx2tf.
activation function compatible with TFLite rather than the
SELU activation function during its development on PyTorch.

For an illustrative example, Fig. 8 shows a model of the
This approach may slightly reduce the accuracy of the deep

leading part of PyTorch’s MultiHeadAttention operation
learning algorithm. However, even after conversion to TFLite

format via ONNX format, ReLU operations remain unchanged,

exported into the ONNX format. ONNX does not support the
MultiHeadAttention operation. Hence, a model consisting of a
combination of many operations is generated as the output.
significantly saving both computation time and memory usage
(see Fig. 7).

However, because the ATen::unflatten operation used therein is

unsupported by onnx2tf, the output cannot be converted to
TFLite format.
1x1x2734x8

The ATen::unflatten operation converts one dimension

1x2734x8
1%2734%8

specified by “dim” for a multi-dimensional array into a

ReduceMin Minimum

dimension and size specified by “size.” An equivalent operation

1x2734x8
Minimum

can be achieved using the Reshape operation, which is a
1x8=2734

standard feature of ONNX and TFLite.

Therefore, the
ATen::unflatten operation can be converted functionally intact
sl by replacing it with the Reshape operation through onnx2tf as
1x2734x8 1%2734=8 . .
|:> shown in Fig. 9.
1x2734%8
1x8x2734 .
ONNX format 1x2734x3
(SELU supported) m

Squeeze
137x1x512
1x2734x8

MatMul

137x1x1536
TFLite format

(SELU unsupported)
Fig. 6 TFLite conversion of SELU operation

Gather

Reshape Gather

Transpose

Reshape Transpose
Gather Transpose Reshape
Reshape MatMul
m Transpose Softmax Reshape
MatMul Transpose
Conv2D
Ay
1x8x2734 Y MultiHeadAttention
' Relu v exported to ONNX format ‘\\
@ “
v
A\
1x1x2734%8 !
\ ATen::unflatten operation
1x8x2734 \
8x273)
!
\ 1=-1
R ! 2@
TFLite format 5 operator = unflatten
ONNX format (ReLU supported) \ overload_name =
1
(ReLU supported) ~\
Fig. 7 TFLite conversion of ReLU operation \ diErEEE
!
3.2.3 ONNX model editing
In some cases, PyTorch generates an ONNX format model

Enlarged view
containing operations that cannot be converted because they are

Fig. 8 MultiHeadAttention operation exported into the ONNX format
unsupported by onnx2tf. Even worse, this problem cannot be
solved by modifying the PyTorch model.

Conversion with onnx2tf can be achieved by replacing such

unsupported operations with other operationally compatible

KOGAWARA Toru et al.

input : [a, b, 768]

input : [a,b, 768]

Reshape

1=-1
2@
operator = unflatten
overload_name =

[ATen::unflatten] [Reshape]
dim= -1

shape
size = [3, 256] = [a, b, 3, 256]

output : [a, b, 3, 256]

Fig. 9 Reshape operation equivalent to ATen:unflatten operation

output : [a,b, 3, 256]

To edit the ONNX model, we used a program called Protocol
Buffer Compiler” (hereinafter “protoc”). Using protoc, we first
converted the ONNX model into a text file. Then, we rewrote
the operations in the text file and reconverted it back into an

ONNZX model using protoc again. Fig. 10 shows this procedure:

node {
input: "/attention/Add output_e"
1=-1 input: "/attention/Constant_i_output_e"
input: "/attention/Constant 2 output 8"

2
operator = unflatten
overload_name =

output: "/attention/ATen_output @"
name: "/attention/ATen"
op_type: "ATen"
attribute {
name: “operator”
s: "unflatten”
type: STRING

proto attribute {

name: “overload_name"

s:
type: STRING

domain: "org.pytorch.aten™

input: "/attention/Add_output_e"

input: "/attention/Constant_Aten_Reshape™
output: "/attention/ATen_output @"

name: "/attention/ATen_Reshape"”

op_type: "Reshape”

protgc conversio

initializer {
dims: 4
data_type: 7
name: “/attention/Constant_Aten_Reshape”

raw_data: "¥046¥000¥000¥000¥ (omitted)
shape (4) 1 7

Fig. 10 ONNX model editing flow

Reshape

3.3 Compression

The steps in Subsections 3.1 and 3.2 enabled us to complete a
model suitable for the embedded environment. However, the
model as built might fail to work due to the limited ROM and
RAM volumes available in the embedded environment.

A ROM volume is an area with values fixed during a
program run. This area stores program codes and model data.
Model data, in particular, and especially the weight data of each
neuron of a neural network, occupies most of the ROM volume
available. For example, a linear or fully connected layer
requires a weight data volume equal to the number of input
nodes times the number of output nodes.

On the other hand, a RAM volume is an area used for

intermediate computation during a program run. For instance,

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

when a convolution operation is performed, it is necessary to
retain data equal to the number of input data X the filter size X
the number of channels as intermediate calculation data on the
RAM. These data are batch-processed for each neural network
layer. It then follows that a model with higher computational
complexity per layer requires a larger amount of RAM.

When these required ROM and RAM amounts exceed the
ROM and RAM capacities available in the embedded
environment, the model needs to be compressed. Sub-
subsection 3.3.1 presents the method of performing this

compression.

3.3.1 Hyperparameter tuning

A parameter that specifies the size or the like of each layer in a
model is called a hyperparameter. The tuning of
hyperparameters plays a crucial role in the development of a
deep learning algorithm. The size of the model varies depending
on the hyperparameter settings. So does its accuracy. Increasing
the size of the model does not necessarily improve its accuracy.
A balanced combination of size and accuracy must be explored.

This tuning of a hyperparameter must be performed in the
deep learning algorithm development environment. An
automatic search tool, Optuna®, is used to repeat retraining and
evaluation, changing the candidate combination of parameters to
search for a combination for higher accuracy.

For example, let us run a search with approximately three to
five options assigned to each of the ten hyperparameters in a
deep learning algorithm. The search results yield multiple
instances of the same solution that say, “No result available for
a combination that makes a model smaller in size and higher in
accuracy.” When tuning is viewed as an optimization problem
between model size and accuracy, these solutions are referred to
as Pareto solutions. Fig. 11 shows the measured values and
Pareto solutions. From among the Pareto solutions, select tuning
results that meet the model size and accuracy requirements.

For the tuning results thus obtained, the steps in Subsections
3.1 and 3.2 are repeated to obtain a model installable in the

embedded environment.

KOGAWARA Toru et al.

30

. + Actual Value
25

+ Pareto solution

— - - Pareto front (approx.}
-

20

15 |

10 4

Model Size [MB]

7.8 8
High .

Accuracy

8.4
STD of error

Fig. 11 Measurement and search results for model size and accuracy

3.3.2 Model quantization

One of the general methods for compressing deep learning
models is the quantization of weight data. The term
quantization refers to achieving reduced computational
complexity and memory usage by turning floating-point
numbers into fixed-point numbers and expressing them as low-
bit-count integer types.

The quantization operation for a deep learning model is
performed by specifying the options for model conversion, as
outlined in Subsection 3.1. When an input data constellation is
given, the numerical value range for each layer of the neural
network is automatically calculated, thereby assigning an
operation to contain data within that range and convert them

into integers. Fig. 12 shows a conceptual diagram:

Deep Learning Model
in Development Environment

Deep Learning Model
for Embedded Environment

8bit—32bit
Conversion

Fig. 12 Conceptual diagram of quantization in model conversion

Weight of each neuron:
32-bit floating point

When quantized from 32-bit to 8-bit, the model is
compressed to approximately 1/4 of its original size. On the one
hand, this method does not affect the algorithm. On the other

hand, it doesn’t optimize the algorithm for quantization, which

poses an accuracy challenge.

4. Evaluation
Section 4 evaluates the pros and cons of the deep learning

model embedding methods as presented in Sections 2 and 3

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

based on the results of applying them to an algorithm and

hardware designed for actual sensor products.

4.1 Evaluation targets

This section uses a blood pressure monitor (sphygmomanometer)
as an example of the intended target products. A blood pressure
monitor is a sensor that produces two numerical outputs of the
maximal or systolic blood pressure (SBP) value and the
minimal or diastolic blood pressure (DBP) value from two sets
of one-dimensional time-series input data, cuff pressure data
obtained by the compression of the blood vessels with an
inflated cuff and pulse wave data generated during cardiac
contractions. Fig. 13 shows the cuff pressure and pulse wave
inputs to a inflation-based blood pressure monitor:

160
140 // |
Systolic blood pressure] q “ M
o 120 A AW 111111 .
3 100 M| A =
o =
2 80 o L=
& @
£ 60 I &
(&)
40 HHTHH
Diastolic blood pressure] 'I”
20
0 |
0 10 20 30 40 50
Time [sec] | —— Cuff Pressure —— PulseWave

Fig. 13 Inputs to and outputs from the blood pressure monitor

Generally, blood pressure monitor products need to be
moderately priced compared with PCs and other electronic
devices. As such, they are controlled by a microcontroller with a
capacity and speed several orders of magnitude lower than those
of PC CPUs. Therefore, they have a hardware constraint, which
is the difficulty in installing a deep learning algorithm
developed on a PC as is. Table 7 is an excerpted reproduction of
the hardware specifications for the implementation target
selected in Subsection 2.3:

Table 7 Hardware specifications for the evaluation environment

Item ‘ Specification ‘

Remarks
CPU core Cortex M7 With built-in FPU
Clock frequency 216 MHz
Flash ROM volume 66 MB 2 MB internal and 64 MB external
RAM volume 16.5 MB 532 kB internal and 16 MB external

We prepared the following three different evaluation target

models:

KOGAWARA Toru et al.

i. Size-ignored model
A model developed in the algorithm development
environment with top priority given to accuracy. Selected
as the model with the highest accuracy in the
hyperparameter tuning results in Sub-subsection 3.3.1.
ii. Size-accuracy balanced model
A model is selected based on the tuning result in Sub-
subsection 3.3.1 to strike a balance between size and
accuracy. Selected as the model smallest in size in the
range within which the standard deviation of error, one of
the two evaluation criteria in Subsection 4.2, meets the
criterion.
iii. Quantized model
A model obtained by quantizing the balanced model

above using the method in Sub-subsection 3.3.2.

Fig. 14 shows the correspondence between the models and

parameter tuning results above:

30 :
'. . .
25 9, L
—_ \ j i. Size-ignored model]
) \
=] *
8 .
o 15 \
° \
T 10 \ ii. Balanced model
s I‘. jii. Quantized model
5 [y
*
* *
e 3 S N S A R .
0 ! * s
7.8 8 8.2 8.4 8.6 8.8 9
High 4= STD of error
Accuracy

Fig. 14 Correspondence between the evaluation target models and tuning results

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

the blood pressure values after completing the
measurement. Hence, a runtime of less than 3 seconds is
desired.

* ROM volume

* RAM volume

4.3 Evaluation method and evaluation results

We entered approximately 500 pairs of pulse wave and cuff
pressure data into the deep learning models for testing, allowing
them to run estimations and calculate the errors between SBP
output and ground truth values. Fig. 15 shows a schematic

diagram of this flow:

Evaluation
Database

Ground Truth of A
Systolic blood pressure "
Pulse Wave Data

Cuff Pressure Data I
v
Platform for
DL Execution

Statistics
of errors

1

Inferred
Systolic blood pressure

Deep Learning
Model

Evaluate with
three models

Embedded Environmen

Fig. 15 Evaluation method

Table 8 shows the evaluation results for the three different

evaluation target models:

Table 8 Evaluation results

Hyperparameter tuning model

4.2 Evaluation criteria
This section evaluates Models 1, ii, and iii presented in

Subsection 4.1 for the following indicators.

Indicator iii. Quantized model
i. Size-ignored | ii. Balanced
Accuracy (MAE) 6.66 6.74 8.16
Accuracy (SDE) 7.83 7.97 10.71
Runtime [ms] 12,214 1,938 348
ROM volume [MB] 18.37 3.72 0.98
RAM volume [kB] 663.4 221.0 63.7

* MAE (mean absolute error)

An indicator of accuracy. Required to be 5 or
below according to an international standard for
sphygmomanometers’.

* SDE (standard deviation of error)

An indicator of accuracy. Required to be 8 or
below according to an international standard for
sphygmomanometers”.

* Runtime

The time required to calculate the blood pressure values

from measurement data. A commercially available

sphygmomanometer took approximately 3 seconds to show

* The size-ignored model was evaluated for accuracy with the
algorithm development environment. Though large, the
ROM and RAM volumes remained within the limit for
mounting on our target, allowing the model to run even on
the target. However, its runtime exceeded 12 seconds,
making the model too slow for practical use in a
sphygmomanometer.

* The size-accuracy balanced model had a ROM volume of
over 2 MB. As such, it required external flash ROM.
However, with a RAM volume of 221 kB, it was sized to
run with microcontroller-integrated RAM alone. Moreover,

its runtime was within 2 seconds, shorter than achievable

KOGAWARA Toru et al.

with current commercially available products, making the
model acceptably fast.

The quantized model had a ROM volume of 0.98 MB and a
RAM volume of 63.7 kB, both of which fell within the

capacities of the microcontroller’s internal memory. A

runtime of 348 ms (0.348 seconds) was achieved, enabling
the model to run at a practical speed. This model exhibited
a significant deterioration in accuracy, failing to meet the
SDE of less than § as specified in the international standard
for sphygmomanometers.

None of these models met the MAE of less than 5, the mean

absolute error indicator. However, our objective was not to
achieve improved accuracy from the existing technology
but to demonstrate the feasibility of embedding deep
learning technology. Hence, despite not meeting this

indicator, our objective was still achieved.

Based on the above, we successfully developed a deep
learning algorithm that could run in the embedded environment
designed for sphygmomanometers. Additionally, we confirmed
that quantization could significantly reduce runtime and the
volumes of ROM and RAM.

5. Conclusions

5.1 Our achievements so far

This paper presented a procedure established for running our
deep learning algorithm in the target embedded environment.
We converted a deep learning model developed on PyTorch, a
deep learning algorithm development environment, for use on
TensorFlow Lite for Microcontrollers, the execution
environment for deep learning algorithms for embedded use. To
address several challenges resulting from the conversion, we
presented specific solutions. Moreover, we presented two
methods of hyperparameter tuning and model quantization as
the means of model compression to meet the memory and
runtime constraints required for the embedded environment.
Finally, we ran the compressed model on the microcontroller to
demonstrate the feasibility of operating our deep learning
algorithm in embedded environments.

The procedure presented in Section 3 can be applied to
diverse developments. We conducted an implementation
feasibility study, using a sphygmomanometer as an example, to
verify that our proposed procedure is moderately feasible. The
applicability of our deep learning algorithm may not be limited
to sphygmomanometers but may also extend to sensors that
perform signal processing on one-dimensional data strings.
Examples of likely candidates include sensors that measure

physical quantities such as light and temperature.

Feasibility Study for Embedded Al Using TensorFlow Lite for Microcontrollers

5.2 Future work

Our hyperparameter tuning enabled accuracy retention to a
degree but fell short of keeping errors within the acceptable
range for the microcontroller’s internal memory, leaving room
for improvement. In our approach, quantization resulted in
significantly reduced accuracy. The means of achieving
accuracy retention simultaneously with quantization include, for
example, a method that develops a model to remain accurate in
its quantized state by proceeding with a model in its quantized
state from its training phase in the development environment.
We continue this study to pursue an optimal balance between

size reduction and accuracy toward future practical applications.

References

1) Katsuya Hyodo. “onnx2tf.” GitHub. https://github.com/PINTO0309/
onnx2tf (Accessed: Nov. 1, 2024).

2) Google. “TensorFlow Lite Converter.” TensorFlow. https:/www.
tensorflow.org/lite/convert?hl=ja (Accessed: Nov. 1, 2024).

3) Open Neural Network Exchange. “TensorFlow Backend for ONNX.”
GitHub. https://github.com/onnx/onnx-tensorflow (Accessed: Nov.
1, 2024).

4) Dabal Pedamonti. “Comparison of non-linear activation functions for
deep neural networks on MNIST classification task.” arXiv. https:/
arxiv.org/abs/1804.02763 (Accessed: Apr. 8, 2018).

5) Google. “Protocol Buffers - Google’s data interchange format.”
GitHub. https://github.com/protocolbuffers/protobuf (Accessed: Nov.
5,2024).

6) T. Akiba et al., “Optuna: A Next-generation Hyperparameter
Optimization Framework,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Min., 2019, pp. 2623-2631.

7) Non-invasive sphygmomanometers - Part 2: Clinical investigation of

intermittent automated measurement type, 1SO 81060-2, 2018.

About the Authors
KOGAWARA Toru

Advanced Technology Development Dept.
Advanced Technology Center

Technology and Intellectual Property HQ.
Specialty: Software Science

Affiliated Academic Society: ISCIE

WATANABE Yasuhisa

Advanced Technology Center

Technology and Intellectual Property HQ.
Specialty: Software Science

Affiliated Academic Society: IEICE, ISCIE, SICE

The names of products in the text may be trademarks of each company.

