
KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

Contact : KOGAWARA Toru toru.kogawara@omron.com

Feasibility Study for Embedded AI Using 
TensorFlow Lite for Microcontrollers
KOGAWARA Toru and WATANABE Yasuhisa

In recent years, deep learning algorithms have been applied to sensing and are contributing to the enhancement of 
high-precision devices, such as image sensors. This study aims to apply deep learning algorithms to simple 
sensors that handle one-dimensional signals with the goal of improving accuracy. Because of cost constraints to 
realize lower product prices, it is challenging to implement large-scale algorithms into simple sensors; however, 
we aim to achieve this by utilizing embedded deep learning platforms and applying model optimization 
techniques. In this paper, we use a blood pressure monitor as a practical example of a simple sensor. First, we 
chose a deep learning platform, and then we described the method for integrating a pretrained model into the 
blood pressure monitor as well as the techniques for model optimization. Finally, we evaluated the ROM and 
RAM volumes, accuracy, and execution time, demonstrating the feasibility of the proposed method.

1.	 Introduction
In recent years, deep learning technology has found applications 
in sensing algorithms. Deep learning offers the advantages of 
enhanced accuracy and robustness against noise. The use of 
deep learning enables high-precision recognition with automatic 
extraction of complex data patterns. It also enables adaptation to 
noise-ridden environments and diverse data, allowing for 
recognition that is free from noise distraction. Deep learning 
sensing has found applications for a variety of purposes, such as 
image recognition for autonomous driving vehicles and voice 
recognition for smart speakers.

OMRON emphasizes sensing as one of its core technologies 
and has developed a diverse range of sensor products. Besides 
image sensors and other complex products that handle large-
capacity signals, many simple sensor products handle simple one-
dimensional signals. Simple sensor products cannot have a high 
price tag. This cost constraint places limits on the hardware, 
making it challenging to implement large-scale algorithms, such 
as those used in deep learning, on these products.

On the other hand, simple sensor products are also always 
expected to provide more accurate recognition and higher noise 
adaptation. Therefore, we conducted a feasibility study to 
further improve sensing accuracy at low cost by integrating 
deep learning into sensors that handle simple one-dimensional 
signals.

Deep learning consists of two phases: training and inference. 
Generally, a training function is based on a more complex 
algorithm than an inference function and requires high memory 

capacity and computational complexity. Considering the 
severity of hardware constraints, we initiated the feasibility 
study by installing only the inference function on the sensor.

Accordingly, our feasibility study proceeded as follows: 
developing and training a deep learning model in the algorithm 
development environment, then installing the model in the 
sensor, and running it to perform measurement and inference. 
Fig. 1 shows the structure of the deep learning sensing 
development explored herein.

Fig. 1  Deep learning sensing development explored herein

The rest of this paper proceeds as follows: Section 2 describes 
the deep learning development and execution platforms available 
and then outlines the selections made. Section 3 explains the 
method of converting the deep learning model developed in 
the development environment for use in the sensor-embedded 
environment, followed by the method of compressing the model. 
Section 4 presents an example of implementation into a blood 
pressure monitor (sphygmomanometer), along with the results 

1

OMRON TECHNICS Vol.57.009EN 2025.7



achieved for such parameters as hardware resource usage, 
runtime, and accuracy to evaluate our proposed method. Fig. 2 
shows the flow of these steps. The numbers such as “2.1” found 
in the balloons in Fig. 2 correspond to the section and subsection 
numbers in this paper.

Fig. 2  Flow of our feasibility study

2.	 Platform
Deep learning algorithm development starts with the selection 
of a deep learning platform and then proceeds to describe and 
train a model so that it can run on that platform. Running the 
developed model in an embedded environment requires another 
platform compatible with the embedded environment.

2.1	 Deep learning development platform
Table 1 explains actual examples of platforms for developing 
deep learning algorithms:

Table 1  Representative deep learning development platforms

Platform name Features

PyTorch

An open-source library developed by Facebook. One of 
the representative deep learning development platforms. 
Characterized to allow intuitive modeling and widely used 
in academic research.

TensorFlow (Keras)

An open-source library developed by Google. One of the 
representative deep learning development platforms. 
There is also a platform called Keras, which is a 
TensorFlow variant equipped with a high-level API. 
Numerous peripheral tools are available for model 
deployment, management, and other purposes.

TensorFlow Lite 
(hereinafter TFLite 
for short)

A light version of TensorFlow. Optimized for mobile edge 
devices. TFLite supports a subset of TensorFlow 
operations. Renamed LiteRT in Sept. 2024.

TVM
An open-source deep learning platform developed by 
Apache. TVM can generate codes optimized for different 
hardware platforms.

We adopted PyTorch, valuing its convenience in model 
building and training.

2.2	 Embedded environment platform
We investigated and selected platforms available for running 
deep learning algorithm models in embedded environments. Our 

objective was to integrate deep learning into a simple sensor. 
Considering that the target of our intended implementation 
example was a blood pressure monitor, we used the following 
two selection criteria:

• Simple sensors are tightly cost-constrained design-wise and, 
as hardware, should be selectable with less strict constraints.

• The platform should work OK even with a small-scale 
microcontroller that cannot be installed with a high-
functionality OS, such as Linux.

Table 2 shows the results of investigating platforms for the 
above criteria:

Table 2  Investigation results on platforms for embedded use

Platform name Features

TensorFlow Lite for 
Microcontrollers 
(hereinafter TFLM 
for short)

A light open-source library obtained by further 
compression of TFLite and compressed enough to run 
even on embedded microcontrollers. TFLM assumes even 
microcontrollers with an available memory size of several 
kilobytes. Its supported operations are a further subset of 
TFLite operations. It provides a model execution function 
only, without a model retraining function.

microTVM

An open-source library to run TVM models on embedded 
microcontrollers. microTVM assumes even non-OS 
installed microcontrollers. It is still under development 
and likely to undergo major modifications.

Edge Impulse

Edge Impulse’s commercial solution. It encompasses a 
comprehensive range of functions from model 
development and training to deployment on embedded 
devices. Its outputs can be generated as C language 
source code for integration into other software.

STM32
X-CUBE-AI

A free plug-in for STMicro’s microcontroller STM32 series 
integrated development environment. It imports and 
converts models developed on other platforms to efficient 
C language code. It provides a model execution function 
only.

Two out of the four platforms, microTVM and TFLM, meet 
the selection criteria given above. However, the possibility 
exists that microTVM may undergo major modifications, and 
the results of our feasibility study may not be fully utilized in 
future use. Hence, we selected TFLM.

2.3	 Target selection
Technical challenges were expected when proceeding directly to 
implementation into small-scale hardware, the ultimate 
objective. Therefore, from among microcontroller families that 
vary in size from small to large, we picked and used those with 
relatively large-scale hardware to explore implementation. We 
first achieved successful implementation in large-scale 
microcontrollers and then considered compression for 
installation in small-scale microcontrollers to simplify our 
feasibility study.

From among the STM32 family, which features a wide range 
of variations, we selected the STM32F769I-DISCO evaluation 

KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

2



KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

board. This board is equipped with a comparatively high-level 
microcontroller, ranked high in those available in the STM32 
family. Provided with an external flash memory and an 
SDRAM, in addition to the microcontrollerʼs internal memory, it 
can be expected to work even before being optimized for the 
embedded environment. Table 3 shows the detailed 
specifications for the selected target:

Table 3  Specifications for the implementation target

Item Specification

Board name STM32F769I-DISCO

Microcontroller STM32F769NIH6

CPU core Arm Cortex-M7, 216 MHz

Internal Flash memory 2 MB Total ROM size
66 MBExternal Flash memory 64 MB

Internal RAM 512 kB Total RAM size
16.5 MBExternal SDRAM 16 MB

2.4	 Porting execution
As mentioned above, we adopted TFLM. However, TFLM is 
distributed in source code form and must be compiled and built 
to suit the userʼs environment. For our feasibility study, we 
rebuilt the TFLM code into a static library for Cortex-M7 and 
used it with static linkage to the application. Fig. 3 shows the 
software configuration for using the TFLM library.

The TFLM library functions as an interpreter of models in 
TFLite format, translating model descriptions consecutively to 
perform computations layer by layer.

Fig. 3  Software configuration for using the TFLM library

3.	 Models
Multiple expression formats exist for deep learning algorithm 
models. A single platform often supports multiple model 
formats. Moreover, tools exist for the interconversion of model 
formats.

3.1	 Selection of the model format and conversion tool for use
The deep learning model we used was developed on PyTorch. 
Running this model on TFLM required converting the model 
format to a compatible one.

3.1.1	 Model formats
Table 4 lists representative deep learning model formats:

Table 4  Representative deep learning model formats

Platform 
name Features

PyTorch 
Saved 
Model

Information of the model developed on PyTorch. While the 
format and weight information of each layer are stored, interlayer 
connections are written to the Python program side and, hence, 
are usable only on PyTorch.

ONNX
Abbreviation for Open Neural Network eXchange. An open 
format usable on various platforms. Both model structure and 
weight information are stored.

TensorFlow Information of the model developed on TensorFlow. As with 
ONNX, both model structure and weight information are stored.

TFLite
This format has TensorFlow model information replaced with 
TFLite operations and compressed in size through Flatbuffers (a 
Google-developed serialization library).

Table 5 shows the correspondence between the above model 
formats and the platforms presented in 2.1 and 2.2:

Table 5  Correspondence table between platforms and model formats

Model format

Platform

PyTorch 
Saved Model ONNX TensorFlow TFLite

PyTorch  

TensorFlow 

TFLite, TFLM 

TVM  

Edge Impulse   

STM32 X-CUBE-AI  

3.1.2	 Conversion tool selection
Multiple model format conversion tools are available for 
converting deep learning models currently in use. Table 6 shows 
the interconvertibility and conversion tools for the four model 
formats above:

Table 6  Interconversion table for the four model formats

Conversion destination 
format

Conversion 
source format

PyTorch 
Saved Model ONNX TensorFlow TFLite

PyTorch Saved Model (1)

ONNX (1) (2)
(4) (2)

TensorFlow (3)

TFLite

(1) ONNX import and export supported by PyTorch.
(2) Open-source software onnx2tf1)

(3) TensorFlow Lite Converter available from the TensorFlow official site2)

(4) onnx-tensorflow available from the ONNX community3)

Our purpose right here was to convert the deep learning 
model developed on PyTorch to TFLite format. In this case, 
either of the following two candidate paths was the option to 
take:

3



A) (1) → (2): The model is exported in ONNX format from 
PyTorch to onnx2tf for conversion to TFLite format.

B) (1) → (4) → (3): The model is exported in ONNX format 
from PyTorch for conversion by onnx-tensorflow to 
TensorFlow format and then by TensorFlow Lite 
Converter to TFLite format.

Of the two options, onnx-tensorflow used in path B was last 
updated in November 2022. As of the time of drafting this 
paper (November 2024), there had been no update for almost 
two years. In other words, path B had the drawback of being 
inaccessible to the latest functions of ONNX and TensorFlow.

Therefore, we selected path A for model conversion. 
However, onnx2tf does not support all ONNX operations. 
Suppose that an operation unsupported by onnx2tf is used in an 
ONNX model. In that case, an error will occur, resulting in a 
conversion failure that requires some fixes, the details of which 
are provided immediately below in Subsection 3.2.

3.2	 Fixes for unsupported operations
As mentioned in Sub-subsection 3.1.2, some ONNX operations 
are unsupported by onnx2tf and may not be converted to TFLite 
format.

Besides, even after successful conversion to TFLite format, 
another challenge awaits: TFLM does not support all TFLite 
operations. If any operation unsupported by TFLM is included 
in the converted TFLite model, an error will occur during 
program execution.

Fig. 4 outlines these problems and their possible fixes, 
followed by detailed descriptions. The numbers, such as 
“3.2.1,” found in the balloons in Fig. 4 correspond to the sub-
subsection numbers in this paper.

Fig. 4  Problems due to unsupported operations and possible fixes

3.2.1	 Software updating
Both onnx2tf and TFLM are open-source software that is under 
active and continuous development. Operations unsupported by 
some versions may become executable or be conveted to other 
simple operations several months later. Regular reference should 
be made to software update information to check for any 
change in the status. If a software update can fix the model 
conversion or execution issue, it is the best solution.

3.2.2	 Modifying operations used in the original model
Suppose that an operation unsupported in a converted model 
format is used in the original model. The required improvement 
is to modify this operation into one that is supported in the 
converted model format.

This sub-subsection presents an example of replacing the 
SELU activation function with the ReLU activation function in 
a neural network. The ReLU (Rectified Linear Unit) activation 
function is commonly used in the intermediate layers of deep 
learning. SELU (Scaled Exponential Linear Unit) was devised 
as an alternative to ReLU to improve the accuracy of deep 
learning. Our target algorithm was also developed using SELU. 
Fig. 5 shows the input and output of each activation function:

Fig. 5  SELU and ReLU activation functions

As shown in Fig. 5, the SELU and ReLU outputs 
significantly differ only when the input x is negative. Because of 
this difference, a deep learning model may show slightly higher 
accuracy with the SELU activation function than otherwise4).

However, TFLite has no SELU-equivalent operations. Hence, 
when converting an ONNX model that uses a SELU operation, 
onnx2tf combines multiple operations to generate a model 
comparable in computation to SELU (See Fig. 6). The model 
produces calculation results equivalent to those of SELU, albeit 
with significantly longer computation time and higher memory 
usage.

KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

4



KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

Our solution is to modify the algorithm to use the ReLU 
activation function compatible with TFLite rather than the 
SELU activation function during its development on PyTorch. 
This approach may slightly reduce the accuracy of the deep 
learning algorithm. However, even after conversion to TFLite 
format via ONNX format, ReLU operations remain unchanged, 
significantly saving both computation time and memory usage 
(see Fig. 7).

Fig. 6  TFLite conversion of SELU operation

Fig. 7  TFLite conversion of ReLU operation

3.2.3	 ONNX model editing
In some cases, PyTorch generates an ONNX format model 
containing operations that cannot be converted because they are 
unsupported by onnx2tf. Even worse, this problem cannot be 
solved by modifying the PyTorch model.

Conversion with onnx2tf can be achieved by replacing such 
unsupported operations with other operationally compatible 

ONNX operations supported by onnx2tf.
For an illustrative example, Fig. 8 shows a model of the 

leading part of PyTorchʼs MultiHeadAttention operation 
exported into the ONNX format. ONNX does not support the 
MultiHeadAttention operation. Hence, a model consisting of a 
combination of many operations is generated as the output. 
However, because the ATen::unflatten operation used therein is 
unsupported by onnx2tf, the output cannot be converted to 
TFLite format.

The ATen::unflatten operation converts one dimension 
specified by “dim” for a multi-dimensional array into a 
dimension and size specified by “size.” An equivalent operation 
can be achieved using the Reshape operation, which is a 
standard feature of ONNX and TFLite. Therefore, the 
ATen::unflatten operation can be converted functionally intact 
by replacing it with the Reshape operation through onnx2tf as 
shown in Fig. 9.

Fig. 8  MultiHeadAttention operation exported into the ONNX format

5



Fig. 9  Reshape operation equivalent to ATen::unflatten operation

To edit the ONNX model, we used a program called Protocol 
Buffer Compiler5) (hereinafter “protoc”). Using protoc, we first 
converted the ONNX model into a text file. Then, we rewrote 
the operations in the text file and reconverted it back into an 
ONNX model using protoc again. Fig. 10 shows this procedure:

Fig. 10  ONNX model editing flow

3.3	 Compression
The steps in Subsections 3.1 and 3.2 enabled us to complete a 
model suitable for the embedded environment. However, the 
model as built might fail to work due to the limited ROM and 
RAM volumes available in the embedded environment.

A ROM volume is an area with values fixed during a 
program run. This area stores program codes and model data. 
Model data, in particular, and especially the weight data of each 
neuron of a neural network, occupies most of the ROM volume 
available. For example, a linear or fully connected layer 
requires a weight data volume equal to the number of input 
nodes times the number of output nodes.

On the other hand, a RAM volume is an area used for 
intermediate computation during a program run. For instance, 

when a convolution operation is performed, it is necessary to 
retain data equal to the number of input data×the filter size× 
the number of channels as intermediate calculation data on the 
RAM. These data are batch-processed for each neural network 
layer. It then follows that a model with higher computational 
complexity per layer requires a larger amount of RAM.

When these required ROM and RAM amounts exceed the 
ROM and RAM capacities available in the embedded 
environment, the model needs to be compressed. Sub-
subsection 3.3.1 presents the method of performing this 
compression.

3.3.1	 Hyperparameter tuning
A parameter that specifies the size or the like of each layer in a 
model is called a hyperparameter. The tuning of 
hyperparameters plays a crucial role in the development of a 
deep learning algorithm. The size of the model varies depending 
on the hyperparameter settings. So does its accuracy. Increasing 
the size of the model does not necessarily improve its accuracy. 
A balanced combination of size and accuracy must be explored.

This tuning of a hyperparameter must be performed in the 
deep learning algorithm development environment. An 
automatic search tool, Optuna6), is used to repeat retraining and 
evaluation, changing the candidate combination of parameters to 
search for a combination for higher accuracy.

For example, let us run a search with approximately three to 
five options assigned to each of the ten hyperparameters in a 
deep learning algorithm. The search results yield multiple 
instances of the same solution that say, “No result available for 
a combination that makes a model smaller in size and higher in 
accuracy.” When tuning is viewed as an optimization problem 
between model size and accuracy, these solutions are referred to 
as Pareto solutions. Fig. 11 shows the measured values and 
Pareto solutions. From among the Pareto solutions, select tuning 
results that meet the model size and accuracy requirements.

For the tuning results thus obtained, the steps in Subsections 
3.1 and 3.2 are repeated to obtain a model installable in the 
embedded environment.

KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

6



KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

Fig. 11  Measurement and search results for model size and accuracy

3.3.2	 Model quantization
One of the general methods for compressing deep learning 
models is the quantization of weight data. The term 
quantization refers to achieving reduced computational 
complexity and memory usage by turning floating-point 
numbers into fixed-point numbers and expressing them as low-
bit-count integer types.

The quantization operation for a deep learning model is 
performed by specifying the options for model conversion, as 
outlined in Subsection 3.1. When an input data constellation is 
given, the numerical value range for each layer of the neural 
network is automatically calculated, thereby assigning an 
operation to contain data within that range and convert them 
into integers. Fig. 12 shows a conceptual diagram:

Fig. 12  Conceptual diagram of quantization in model conversion

When quantized from 32-bit to 8-bit, the model is 
compressed to approximately 1/4 of its original size. On the one 
hand, this method does not affect the algorithm. On the other 
hand, it doesnʼt optimize the algorithm for quantization, which 
poses an accuracy challenge.

4.	 Evaluation
Section 4 evaluates the pros and cons of the deep learning 
model embedding methods as presented in Sections 2 and 3 

based on the results of applying them to an algorithm and 
hardware designed for actual sensor products.

4.1	 Evaluation targets
This section uses a blood pressure monitor (sphygmomanometer) 
as an example of the intended target products. A blood pressure 
monitor is a sensor that produces two numerical outputs of the 
maximal or systolic blood pressure (SBP) value and the 
minimal or diastolic blood pressure (DBP) value from two sets 
of one-dimensional time-series input data, cuff pressure data 
obtained by the compression of the blood vessels with an 
inflated cuff and pulse wave data generated during cardiac 
contractions. Fig. 13 shows the cuff pressure and pulse wave 
inputs to a inflation-based blood pressure monitor:

Fig. 13  Inputs to and outputs from the blood pressure monitor

Generally, blood pressure monitor products need to be 
moderately priced compared with PCs and other electronic 
devices. As such, they are controlled by a microcontroller with a 
capacity and speed several orders of magnitude lower than those 
of PC CPUs. Therefore, they have a hardware constraint, which 
is the difficulty in installing a deep learning algorithm 
developed on a PC as is. Table 7 is an excerpted reproduction of 
the hardware specifications for the implementation target 
selected in Subsection 2.3:

Table 7  Hardware specifications for the evaluation environment

Item Specification Remarks

CPU core Cortex M7 With built-in FPU

Clock frequency 216 MHz

Flash ROM volume 66 MB 2 MB internal and 64 MB external

RAM volume 16.5 MB 532 kB internal and 16 MB external

We prepared the following three different evaluation target 
models:

7



i. Size-ignored model
A model developed in the algorithm development 

environment with top priority given to accuracy. Selected 
as the model with the highest accuracy in the 
hyperparameter tuning results in Sub-subsection 3.3.1.

ii. Size-accuracy balanced model
A model is selected based on the tuning result in Sub-

subsection 3.3.1 to strike a balance between size and 
accuracy. Selected as the model smallest in size in the 
range within which the standard deviation of error, one of 
the two evaluation criteria in Subsection 4.2, meets the 
criterion.

iii. Quantized model
A model obtained by quantizing the balanced model 

above using the method in Sub-subsection 3.3.2.

Fig. 14 shows the correspondence between the models and 
parameter tuning results above:

Fig. 14  Correspondence between the evaluation target models and tuning results

4.2	 Evaluation criteria
This section evaluates Models i, ii, and iii presented in 
Subsection 4.1 for the following indicators.

• MAE (mean absolute error)
An indicator of accuracy. Required to be 5 or 

below according to an international standard for 
sphygmomanometers7).

• SDE (standard deviation of error)
An indicator of accuracy. Required to be 8 or 

below according to an international standard for 
sphygmomanometers7).

• Runtime
The time required to calculate the blood pressure values 

from measurement data. A commercially available 
sphygmomanometer took approximately 3 seconds to show 

the blood pressure values after completing the 
measurement. Hence, a runtime of less than 3 seconds is 
desired.

• ROM volume
• RAM volume

4.3	 Evaluation method and evaluation results
We entered approximately 500 pairs of pulse wave and cuff 
pressure data into the deep learning models for testing, allowing 
them to run estimations and calculate the errors between SBP 
output and ground truth values. Fig. 15 shows a schematic 
diagram of this flow:

Fig. 15  Evaluation method

Table 8 shows the evaluation results for the three different 
evaluation target models:

Table 8  Evaluation results

Indicator
Hyperparameter tuning model

iii. Quantized model
i. Size-ignored ii. Balanced

Accuracy (MAE) 6.66 6.74 8.16

Accuracy (SDE) 7.83 7.97 10.71

Runtime [ms] 12,214 1,938 348

ROM volume [MB] 18.37 3.72 0.98

RAM volume [kB] 663.4 221.0 63.7

• The size-ignored model was evaluated for accuracy with the 
algorithm development environment. Though large, the 
ROM and RAM volumes remained within the limit for 
mounting on our target, allowing the model to run even on 
the target. However, its runtime exceeded 12 seconds, 
making the model too slow for practical use in a 
sphygmomanometer.

• The size-accuracy balanced model had a ROM volume of 
over 2 MB. As such, it required external flash ROM. 
However, with a RAM volume of 221 kB, it was sized to 
run with microcontroller-integrated RAM alone. Moreover, 
its runtime was within 2 seconds, shorter than achievable 

KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

8



KOGAWARA Toru et al.� Feasibility Study for Embedded AI Using TensorFlow Lite for Microcontrollers

with current commercially available products, making the 
model acceptably fast.

• The quantized model had a ROM volume of 0.98 MB and a 
RAM volume of 63.7 kB, both of which fell within the 
capacities of the microcontrollerʼs internal memory. A 
runtime of 348 ms (0.348 seconds) was achieved, enabling 
the model to run at a practical speed. This model exhibited 
a significant deterioration in accuracy, failing to meet the 
SDE of less than 8 as specified in the international standard 
for sphygmomanometers.

• None of these models met the MAE of less than 5, the mean 
absolute error indicator. However, our objective was not to 
achieve improved accuracy from the existing technology 
but to demonstrate the feasibility of embedding deep 
learning technology. Hence, despite not meeting this 
indicator, our objective was still achieved.

Based on the above, we successfully developed a deep 
learning algorithm that could run in the embedded environment 
designed for sphygmomanometers. Additionally, we confirmed 
that quantization could significantly reduce runtime and the 
volumes of ROM and RAM.

5.	 Conclusions
5.1	 Our achievements so far
This paper presented a procedure established for running our 
deep learning algorithm in the target embedded environment. 
We converted a deep learning model developed on PyTorch, a 
deep learning algorithm development environment, for use on 
TensorFlow Lite for Microcontrollers, the execution 
environment for deep learning algorithms for embedded use. To 
address several challenges resulting from the conversion, we 
presented specific solutions. Moreover, we presented two 
methods of hyperparameter tuning and model quantization as 
the means of model compression to meet the memory and 
runtime constraints required for the embedded environment. 
Finally, we ran the compressed model on the microcontroller to 
demonstrate the feasibility of operating our deep learning 
algorithm in embedded environments.

The procedure presented in Section 3 can be applied to 
diverse developments. We conducted an implementation 
feasibility study, using a sphygmomanometer as an example, to 
verify that our proposed procedure is moderately feasible. The 
applicability of our deep learning algorithm may not be limited 
to sphygmomanometers but may also extend to sensors that 
perform signal processing on one-dimensional data strings. 
Examples of likely candidates include sensors that measure 
physical quantities such as light and temperature.

5.2	 Future work
Our hyperparameter tuning enabled accuracy retention to a 
degree but fell short of keeping errors within the acceptable 
range for the microcontrollerʼs internal memory, leaving room 
for improvement. In our approach, quantization resulted in 
significantly reduced accuracy. The means of achieving 
accuracy retention simultaneously with quantization include, for 
example, a method that develops a model to remain accurate in 
its quantized state by proceeding with a model in its quantized 
state from its training phase in the development environment. 
We continue this study to pursue an optimal balance between 
size reduction and accuracy toward future practical applications.

References
1) Katsuya Hyodo. “onnx2tf.” GitHub. https://github.com/PINTO0309/

onnx2tf (Accessed: Nov. 1, 2024).
2) Google. “TensorFlow Lite Converter.” TensorFlow. https://www.

tensorflow.org/lite/convert?hl=ja (Accessed: Nov. 1, 2024).
3) Open Neural Network Exchange. “TensorFlow Backend for ONNX.” 

GitHub. https://github.com/onnx/onnx-tensorflow (Accessed: Nov. 
1, 2024).

4) Dabal Pedamonti. “Comparison of non-linear activation functions for 
deep neural networks on MNIST classification task.” arXiv. https://
arxiv.org/abs/1804.02763 (Accessed: Apr. 8, 2018).

5) Google. “Protocol Buffers - Googleʼs data interchange format.”
GitHub. https://github.com/protocolbuffers/protobuf (Accessed: Nov. 
5, 2024).

6) T. Akiba et al., “Optuna: A Next-generation Hyperparameter 
Optimization Framework,” in Proc. ACM SIGKDD Int. Conf. 
Knowl. Discovery Data Min., 2019, pp. 2623-2631.

7) Non-invasive sphygmomanometers - Part 2: Clinical investigation of 
intermittent automated measurement type, ISO 81060-2, 2018.

About the Authors

KOGAWARA Toru
Advanced Technology Development Dept.
Advanced Technology Center
Technology and Intellectual Property HQ.
Specialty: Software Science
Affiliated Academic Society: ISCIE

WATANABE Yasuhisa
Advanced Technology Center
Technology and Intellectual Property HQ.
Specialty: Software Science
Affiliated Academic Society: IEICE, ISCIE, SICE

The names of products in the text may be trademarks of each company.

9


