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To realize robots that can move flexibly in human environments and automate nonstandard tasks, it is essential to 
parallel process functions like recognition, planning, and control to enhance responsiveness. The parallel behavior 
architecture addresses this requirement by executing high-level information processing in upper layers and motion 
capabilities in lower layers simultaneously. This structure ensures that upper processing can influence lower 
processing as needed, maintaining the responsiveness of the robot application. The authors developed middleware 
for robotic technology to enable rapid prototyping of robots with such architectures. This middleware provides 
functionalities that require expertise in implementing real-time processing and parallel processing, thereby 
streamlining the development process. Additionally, using this middleware, multiple robots with a parallel 
behavior architecture were developed in a short period of time. This paper presents the specifications and 
advantages of the middleware, comparing it with existing solutions. It also presents performance verification 
results and considerations regarding development efficiency using case studies of the middleware and its 
development environment.

1.	 Introduction
Against the background of the recent demographic problems, 
such as youth population shrinkage and labor shortages, needs 
are mounting for robot-driven productivity improvements. In 
response, OMRON has been committed to automating routine 
work, such as production line work, mainly in the FA field. To 
support a broader range of fields/work, OMRON aims to deliver 
various robots that flexibly move in the same space as humans 
and automate nonroutine tasks1). Developing such robots 
involves frequent changes in conditions or tasks. Such changes 
are challenging to foresee through the requirement definition 
process at the beginning of development. Therefore, a practical 
development approach should repeat improvements using rapid 
prototyping in response to user feedback.

Robots must reliably perform tasks while flexibly responding 
to unknown environments or dynamic environmental changes to 
work in the same space as humans. Achieving this goal requires 
coordinating the robotʼs internal processes at high cycles, such 
as recognition, planning, and control.

Robotsʼ internal processes fall into high-order processes that 
handle high-order information, such as recognition/planning, 

and low-order processes that realize robot motion functions, 
such as motor control. Inputs to the low-order processes are the 
outcomes of high-order processes. Hence, the former processes 
depend on the latter. In addition, dependency exists among 
high-order processes, such as the planning and recognition 
processes. In conventional sequential execution methods 
directly modeled on these relationships, high-order processes 
cannot rate-control low-order processes to realize periodicity 
thereto, resulting in the problem of reduced responsiveness of 
robot applications. Brooksʼ Subsumption Architecture2) and 
Yamamoto-Sugiharaʼs Stacked Modulation Architecture3) 
presented a direction for tackling this problem (Fig. 1). These 
parallel behavior architectures independently and parallelly 
execute high- and low-order processes so that high-order 
processes act on low-order processes as necessary. Therefore, 
these architectures can ensure the systemʼs responsiveness 
without preventing low-order processes from executing robot 
motions. Achieving these architectures requires software that 
supports flexible multiple-controller implementation and 
multithread scheduling.
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Fig. 1	 Execution methods per the conventional and parallel behavior architectures

On the other hand, a look at the aspect of robot software 
development reveals that implementing functions requiring expert 
knowledge can often pose bottlenecks in deployment pipelines. 
For instance, implementing motor control and other cyclic 
processes requires considering real-time performance. A parallel 
behavior architecture requires thread-safe implementations 
involving no data conflicts and/or deadlocks, analyses of 
parallel processing-induced malfunctions, and implementation 
modifications. These tasks also require expert knowledge. 
Moreover, rework may occur because of the changing the 
execution environment, including the hardware or operation 
system (OS), while improvements are repeated for the robot 
system.

Software componentization and openization have been 
underway, aiming to improve robot development efficiency. 
However, no middleware has been made available with a 
primary focus on parallel process scheduling, whereby robots 
with a parallel behavior architecture are challenging to develop 
efficiently. Generally, enhancing software development 
efficiency requires improving software quality characteristics, 
such as maintainability and portability.

Based on the above circumstances, we developed robotics 
technology development middleware that reconciles achieving 
the aforementioned architecture and enhancing robot 
development efficiency. Our middleware makes it easier to solve 
the challenges in developing software for robots with a parallel 
behavior architecture, such as achieving real-time performance, 
preventing data conflicts, and changing the execution 
environment.

Achieving real-time performance requires various settings, 
including execution cycles, priorities, and CPU core 
assignments. This task demands expertise specific to OS/
execution environment-dependent embedded developments. 
Moreover, these settings should be easily adjustable for rapid 
prototyping-based development. Hence, our middleware 
provides a multithread scheduling function to perform these 
settings easily. This function turns the concept of real-time 
processing into a model used to make various settings via the 
middlewareʼs interface. Consequently, it has become possible to 
implement or reconfigure real-time processing without OS- or 
execution environment-related knowledge, enabling flexible 
adaptability to specification changes during development.

Data conflict prevention has been achieved by our 
middlewareʼs inter-thread instruction transmission/reception 
function and pub/sub model-based data-sharing function. 
Integrating countermeasures against data conflicts during inter-
thread access into these functions has enabled developers to 
achieve inter-thread access without considering data conflicts.

To solve the challenge of execution environment switching, 
we enabled cross-development in OS environments independent 
of development targets. This approach allows implementations 
in environments different than the target environment or bug 
analysis in debugging-friendly hardware/OS environments. We 
obtained this achievement by providing our middleware with an 
OS abstraction layer.

This paper compares our middleware with conventional 
methods and explains its advantages and usefulness. It also 
discusses the performance verification results and development 
efficiency based on a case of applying our middleware and its 
development environment.

2.	 Existing robot middleware
This section presents the ROS and RT-middleware, both 
representative of widely used middleware of the same category, 
and discusses the problems in each middleware.

2.1	 ROS
The Robot Operating System (ROS)4) is open-source 
middleware developed by Willow Garage for robot system 
development and the eco-system for development environment 
tool sets and deliverables that use the middleware. Now, it is 
maintained and administered by Open Robotics, a nonprofit 
organization. It serves as a basis for implementing various 
functions as units called nodes, which communicate with each 
other via P2P, thereby achieving robot systems. ROS is 
currently most broadly used in research and development 
venues for the following reasons: it enables building such 
loosely coupled systems, it abounds in development 
environment tool sets, its eco-system serves as an arrangement 
for publishing and sharing modules, it uses a BSD license, 
which does not require source code disclosure as long as the 
license conditions are met.

Developers are currently working on a next-generation 
version called ROS25). This version is being newly developed 
based on the results of a requirement review as the requirement 
definitions established in the early days of ROS development 
are growing obsolete. The main differences from the previous 
version include supporting multiple robot control, embedded 
systems, and real-time control.
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2.2	 RT-middleware
RT-middleware (RTM)6) is a software platform for building 
systems that use robots or robotics technologies (RT) developed 
mainly by the National Institute of Advanced Industrial Science 
and Technology (AIST).

RTM allows the construction of robot systems by combining 
software modules that have been componentized. These 
software modules are called RT components (RTC). The 
interface specifications are standardized by the Object 
Management Group (OMG) as official standards7).

Moreover, RTM has been adopted as a development 
infrastructure for the Next-Generation Robot Intelligentization 
Technology Development Project under the Incorporated 
Administrative Agency New Energy and Industrial Technology 
Development Organization (NEDO).

OpenRTM-aist8) is a software platform developed and 
distributed by AIST that includes the implementation of 
RT-middleware. It consists mainly of RTC execution 
management middleware, an RTC implementation framework, 
and a software development environment. With RTC 
frameworks and management functions made available, users 
can concentrate on core logic development.

2.3	 Problems in existing middleware
ROS features a high degree of independence in processing units 
called nodes. Hence, it follows that ROS suits parallel process 
execution for achieving a parallel behavior architecture. 
However, its node processing and inter-node communication do 
not support real-time processing9). Hence, ROS does not suit our 
project herein, which intends to control highly responsive 
robots. ROS2 claims to support real-time control. However, 
real-time performance improvement has extended only to 
communication-related aspects but not beyond10). Accordingly, 
ROS cannot guarantee real-time performance and suffice for our 
objective of achieving a highly responsive robot system. The 
probable cause is that ROS is a framework intended to develop 
robot systems that include robots as components rather than 
control robots per se.

The OpenRTM-aist, an implementation of RT-middleware, 
uses a unit of processing called the RTC. The RTCs have a high 
degree of independence, similarly to the nodes in ROS. The 
OpenRTM-aist supports the real-time processing of node 
handling/communication. Hence, it follows that the OpenRTM-
aist is designed suitably for our intended purpose of achieving 
highly responsive robots. However, achieving a parallel 
behavior architecture or similar configurations requires the 
following tasks for all the RTCs to be executed in real time with 
a patch applied to the kernel to make the standard OS (Ubuntu) 

real-time:

• Implement conversions to/from real-time and non-real-time 
processing before and after cycle execution portions,

• Set the execution cycle and the assignment to the context 
for each priority and

• Set the data transmission/reception method to suit its own 
internal process cycle or the sender/receiver-side cycle to 
prevent delays in cycle execution.

Such implemented systems differ from those that RTM 
inherently assumes, which are configured as networks of 
independent modules. Therefore, these configuration tasks are 
not supported by the standard framework and development 
environment and must be addressed and shouldered by the 
middleware users themselves11).

3.	 Our proposed method
3.1	 Requirements for our middleware
This subsection presents the primary requirements for solving 
the problems described in the previous chapter. It also 
summarizes the requirements for the middleware as a whole, 
which are necessary to enable rapid prototyping for each quality 
characteristic.

3.1.1	 Primary requirements
1)  Multithread scheduling
The middleware shall provide a multithread scheduling function 
that enables explicit high-priority assignments and system 
resource allocations to threads requiring high real-time 
performance, thereby reducing the influences thereon from other 
threads.

2)  Data conflict prevention
The middleware shall provide an inter-thread instruction 
transmission/reception function and a pub/sub model-based 
data-sharing function. Countermeasures against data conflicts 
during inter-thread access shall be consolidated into these 
functions to provide thread-safe and non-blocking data-sharing 
arrangements.

3)  Multiplatform support
The middleware shall have an OS abstraction layer to allow 
cross-development in development target-independent OS 
environments. This approach enables bug analysis on 
implementation/debugging-friendly OS/hardware environments 
different than the target environment.

When determining the specifications for the thread cycle 
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execution processing in Primary Requirement 1 and the data 
sharing in Primary Requirement 2, we used the task and 
variable synchronization functionsʼ behavior12) specified for our 
machine automation controller, the NJ/NX CPU unit, for 
reference.

3.1.2	 Requirements for the middleware as a whole
This sub-subsection classifies the requirements for our 
middleware in accordance with the ISO/IEC 25010 software 
quality characteristics model13). Our middleware enables rapid 
prototyping and places weight on improving technology 
development productivity. As such, it does not consider the 
characteristics required of products, such as functional 
suitability, reliability, and security. Table 1 lists the required 
quality characteristics along with the requirements necessary for 
improved development efficiency, in other words, those for 
development environments and development support functions.

Table 1  Requirements for our middleware

Quality characteristics Requirements

Performance efficiency Allow multithread scheduling with a mixed inclusion 
of real-time and non-real-time processes.

Maintainability Adaptable to robots with various kinematics through 
minimum modifications.

Compatibility Connectable to external systems.

Portability Operational on multiple platforms (multiple OS 
environments).

Usability

Enable development using high-level programming 
languages.

Support building all such processes as recognition, 
planning, and control into a single system.

Others Support CI (Continuous Integration)/CD (Continuous 
Delivery) in development environments.

3.2	 Descriptions of functions
This subsection explains our middlewareʼs primary functions, 
which meet the requirements presented in the previous 
subsection, and its auxiliary functions, which are integrations of 
the software requirements necessary to achieve rapid 
prototyping. Primary Functions 1 and 2 meet performance 
efficiency-related quality requirements, while Primary Function 
3 meets portability-related quality requirements.

3.2.1	 Primary functions
1)  Multithread scheduling function
This function schedules process execution sequences based on 
the execution cycle/priority and scheduling method of each 
process. Parameters, such as cycle, priority, and scheduling 
method, can be set as desired by the developer to suit the 
desired system. This functional specification places weight on 
flexible execution scheduling, unlike conventional methods.

This function enables building a system that parallelly 
executes processes (such as the motor control part) that require 
real-time performance and other processes. The　“real-time 
performance” herein means that a process takes place without 
delay at a constant cycle at expected times, constituting a 
necessary requirement for important processes for robot control. 
For example, a delay in the motor control part delays the 
tracking of motor command values, reducing robot position 
accuracy and path-tracking performance.

Fig. 2 schematically outlines the multithread scheduling 
function. The periodic and nonperiodic threads shown in Fig. 2 
are generated based on the specified scheduling method. The 
execution processes executed in parallel (“proc#N” in Fig. 2) 
are assigned to threads as specified by the developer.

Fig. 2  Outline of multithread scheduling

2)  Data-conflict prevention functions
The following two functions prevent inter-thread data conflicts:

①  Inter-thread instruction transmission/reception function
General-purpose interface-based access (command function) is 
achieved to allow access to the middlewareʼs internal modules 
from threads or other processes. The middleware allows a 
command receiver thread to stay resident to start each moduleʼs 
command execution thread upon command reception, 
guaranteeing the command execution sequence and ensuring the 
threadsʼ execution. Moreover, two command transmission 
methods, one synchronous and the other asynchronous, are used 
to reconcile commands requiring such consecutive execution as 
with robot motions and those requiring no such sequentiality as 
with robotsʼ internal status indication.

• Synchronous: After command transmission, the caller 
process is blocked until the callee accepts the command and 
receives the results. To be used when required to 
synchronize the caller process with command execution. 
Unsuitable for long execution time commands. In no 
periodic thread shall synchronous command transmission be 
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attempted. Failure to comply results in a blocked process.
• Asynchronous: After command transmission, the caller 

process becomes nonblocking when the callee accepts the 
command. The results are called back to a function 
registered at a specified command transmission time. 
Intended to be used for long execution time commands or 
in periodic threads.

The middleware includes a gadget that uses thread-safe 
queues for primary acceptance of commands to ensure that the 
middlewareʼs internal modules receive commands on periodic 
threads, thereby minimizing the critical section of each periodic 
thread to reduce negative impacts on real-time performance.

② Data-sharing function
This function guarantees data change timing and provides 
access protection from other threads while maintaining inter-
thread data consistency. The pub/sub model, also used in ROS 
and RT-middleware, is used to ensure each threadʼs data 
concurrency (Fig. 3). More specifically, this function defines the 
data used on individual threads as those to be published to or 
subscribed to from other threads, thereby ensuring publication 
after thread execution and subscription before thread start. 
Consequently, these data are updated before each threadʼs 
execution, ensuring the identity of the subscribed data during 
each threadʼs execution.

Fig. 3  Conceptual diagram of data sharing

3)  Multiplatform support
The dependency between the operating system (OS) or 
hardware and the middleware should be reduced. Generally, the 
OS/hardware environment is often not fixed at the start of 
robotics technology development. Moreover, changes are often 
made to these environments during development. Therefore, the 
implementation process should use a development target-
independent, implementation-friendly OS/hardware environment 
to pursue developments. The real-machine verification process 
should be flexibly adaptable to the target OS/hardware 
environment. Accordingly, an operating system abstraction layer 
(OSAL) is provided to abstract OS-specific processes to enable 
flexible switching between different operating systems (OS). A 

similar abstraction layer for abstracting hardware is provided to 
enable verification without hardware.

3.2.2	 Auxiliary functions
This subsection describes the auxiliary functions one by one for 
each quality characteristic required of our middleware.

1)  Maintainability
Fig. 4 shows the software architecture schematic. The software 
architecture consists of an application part corresponding to a 
user interface or debugger, a robot framework part (our 
proposed middleware), an OS part, and a hardware part. The 
robot framework includes function modules implemented with 
robot-specific features; a runtime for coordinating basic 
functions, such as scheduling, communication, and resource 
management; and an OSAL. Recognition, planning, control, and 
other robot-specific features are individually modularized/
librarized in the function modules and structured to be plugged 
in. The resulting structure allows operation with a minimum 
module configuration on a desired system, achieving improved 
maintainability and reduced required computational resources.

Fig. 4  Software architecture schematic

2)  Compatibility
For functions outside the scope of technology development, 
external systems are used to reduce implementation man-hours 
and promote rapid prototyping. Therefore, a communication 
function with external systems is provided to exploit existing 
functions available from external systems, such as third-party 
software. Our middleware provides a communication function 
with ROS, allowing access to various systems that support 
ROS.
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3)  Usability/others
Our middleware supports cross-development and CI/CD 
environments. Achieving rapid prototyping in robotics 
technology developments requires turning the cycle of 
algorithm development and actual machine verification at high 
cycles. Accordingly, our middleware supports high-level 
language-friendly, Windows-based development environments 
or open-source, research-friendly Ubuntu-based development 
environments for algorithm development processes. Developers 
use these environments to perform implementations and 
simulations. Development deliverables undergo automated 
testing through a CI environment. On the other hand, the real-
machine verification process auto-generates binaries for target 
environments through a CD environment. These resulting 
advantages reduce developersʼ workloads and human errors in 
simulation- or prototype-based preliminary verifications and 
actual robot verifications, achieving improved development 
efficiency.

4.	 Verification results
Based on a case of applying our middleware and its 
development environment, this section discusses our proposed 
robot middlewareʼs performance verification results and 
development efficiency.

4.1	 Verification environment
4.1.1	 Robot system
This subsection presents an example of a mobile manipulator 
system built with our proposed robot middleware. Fig. 5 shows 

its outward appearance. A robot arm with eight degrees of 
freedom was installed on a wheeled mobile platform with two 
degrees of freedom. The wheeled platform and the arm end 
were fitted with an environment and object recognition camera.

Fig. 5  Development case: External appearance of the mobile manipulator

Fig. 6 shows the internal configuration of our robot system. It 
consisted of cameras (vision sensors), an external-world 
recognition PC (environment recognition PC), a control PC and 
motors for wheel and arm operation (control PC and motors), 
and external sensors (sensors). This system executed self-
position estimation (self-location estimation), path generation 
(path planning), path tracking (navigation), control (control), I/
O control (I/O control), and motor command communication 
processing (motor control) in parallel, using simultaneous 
localization and mapping (SLAM)14) to achieve the desired 
moving motions.

Fig. 6  Development case: Mobile manipulator system
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Other than self-position estimation, processes were executed 
as periodic processes on the real-time OS control PC. Of these 
processes, the path planning and navigation processes, involving 
mathematical optimization and, hence, significant execution 
process time variations, were defined as a 128 [ms/cycle] thread 
with a long execution cycle. On the other hand, the control, I/O 
control, and motor control processes, requiring high real-time 
performance, were defined as a 1 [ms/cycle] and an 8 [ms/
cycle] thread, respectively, with a short execution cycle. These 
periodic threads exchange data via the middlewareʼs data-
sharing function. For scheduling, the settings file was used to 
specify the cycle, priority, and execution thread.

Self-position estimation was executed as a nonperiodic 
process on the non-real-time OS environment recognition PC 
for reasons, such as a significantly longer required execution 
process time than the execution cycle or interfacing with 
sensors. This process was implemented in ROS to perform 
asynchronous communication with the control PC through the 
middlewareʼs ROS communication function. Our robot system 
operated upon receipt of instructions from human-machine 
interfaces (HMI). The middlewareʼs command function was 
used for motion instructions from HMIs.

4.1.2	 Development environment
We built a development environment that executes such CI/CD 
jobs as in Fig. 7 to achieve improved development efficiency 
through multiplatform support. The algorithms and functions 
developed were controlled as function modules on GitLab to 
perform automated building/testing of pushed source code. The 
design quality was ensured by performing automated testing on 
execution binaries tailored to execution environments supported 
by our middleware.

The CI-CD build/test environment was built of a combination 
of a virtual machine on Amazon Web Services (AWS)15) and an 
actual machine for deploying development deliverables. The 

virtual machine ran a docker to build and start CI environment 
containers.

4.2	 Verification results and discussions
This subsection presents the results and discussions for each 
quality characteristic required of our middleware.

4.2.1	 Performance efficiency
This sub-subsection discusses the performance efficiency of our 
built system when operating in an actual environment. The 
measurement environment used was a control PC installed with 
a VxWorks OS, an Intel Core i7-1165G7 2.8 GHz CPU, and 64 
GB of memory.

1)  Multithread scheduling
Fig. 8 shows a thread execution process for our built system 
during mobile manipulator travel. We obtained this information 
using the Wind River Workbench, a VxWorks integrated 
development environment (IDE).

Fig. 8 represents each threadʼs execution state in thick green 
lines and stand-by state in wavy lines. Each threadʼs name and 
priority are stated on the left side in Fig. 8, indicating that 
threads with smaller priority values were executed with higher 
priority. From top to down, 1 ms interrupts for periodic thread 
generation, (Interrupt 200), motor control, I/O control, control, 
and noncyclic threads 1, 2, ..., 5 are shown. Noncyclic threads 
were generated every time the inter-thread instruction 
transmission/reception function or the data-sharing function 
described in 3.2.1-2) and , respectively, was executed. Hence, 
several tens of threads were sometimes simultaneously 
generated. Fig. 8 demonstrates that multiple noncyclic threads 
(noncyclic threads 1 through 5), which significantly varied in 
execution process time, and the motor control, I/O control, and 
control threads, which strongly demand real-time performance, 
were stably and cyclically executed in an execution sequence 

Fig. 7  Development environment

7



with an as-expected execution priority. Fig. 8 does not show the 
planning and navigation threads (128 ms cycle) for notational 
reasons.

2) Real-time performance
Table 2 shows the execution time statistics information 
(minimum, maximum, mean, and standard deviation) for the 
motor control, I/O control, and control threads, which strongly 
demand real-time performance:

Table 2  Execution time statistics information

Thread name
(cycle [ms]/priority)

Minimum
[ms]

Maximum
[ms]

Mean
[ms]

Standard deviation
[ms]

Motor control (1/94) 0.066 0.117 0.074 0.006

I/O control (1/95) 0.163 0.229 0.172 0.011

Control (8/96) 0.211 0.369 0.276 0.031

Our robot system achieved periodic processing by executing 
threads at intervals specified based on 1 ms interrupts. The 
interrupt handling statistics data show that stable interrupts were 
achieved with a minimum value of 0.991 [ms], a maximum 
value of 1.009 [ms], a mean of 1.0 [ms], and a standard 
deviation of 0.001 [ms]. As shown in Table 2, each thread had a 
maximum value of less than one cycle, causing no spike that 
exceeded the cycle execution time. The standard deviation 
column shows that the motor control, I/O control, and control 
threads had a standard deviation of 0.006, 0.011, and 0.031 
[ms], respectively, showing less variability in descending order 
of priority. The above confirms that threads requiring real-time 
performance were cyclically executed with stability.

4.2.2	 Maintainability
In our robot system, robot-specific features were implemented 
and librarized in the function modules, as shown in Fig. 4. 
Meanwhile, shared features were achieved by loading necessary 
libraries for our middleware. Consequently, the robot designer 
was able to focus on developing the function module for the 

robots under their charge. As a result, two-armed robots were 
successfully developed concurrently with the theme under 
which our mobile manipulator was developed, confirming that 
our middleware can serve as a common framework for various 
robots.

4.2.3	 Compatibility
The self-position estimation process was executed on a PC 
different from the control PC as shown in Fig. 6. We 
successfully developed the controls for this process and external 
sensors in a short period, using the ROS abundant with image 
processing libraries and sensor drivers. Using the 
communication function with the ROS, we easily imported this 
function into the robot system, confirming that we achieved 
improved development efficiency.

4.2.4	 Portability
The command function allows access to module-specific 
functions in the runtime and function modules, whereby we 
improved development efficiency using verification tools suited 
for each development phase. For example, we were able to do 
the following, among other things: checking data published/
subscribed via the data-sharing function during the runtime 
development phase, monitoring motor input/output values 
during the robot control functionʼs development phase, and 
checking robot behaviors simulated by the robot simulator 
during the planning function development phase.

Besides, the command function, designed to be multiclient 
compatible, allows the simultaneous use of multiple tools as 
needed. Consequently, verification tools developed by individual 
function developers for their own work became readily 
available for reuse by others, enabling efficient analysis of 
problems encountered after the system became complicated as 
the development progressed.

Of these verification tools, those developed by individual 
developers were shared via CI environments to be improved by 

Fig. 8  Parallel thread scheduling
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other developers in a virtuous cycle. As a result, robot simulator 
tools have become so functionally sophisticated that they can 
visualize/verify random robots in virtual spaces. Visualized 
models of robots can be described in the Unified Robot 
Description Format (URDF)16), a general-purpose robot 
description format. As such, they can be diverted to other future 
development themes and will be deployed together with our 
middleware.

4.2.5	 Usability/others
1)  GitLab-based CI (automatic build/test)
With this CI environment, the automated testing and execution 
binary generation for function modules developed by designers 
on the OS of their choice became performable on the actual 
machine in the target environment. Consequently, we achieved a 
seamless sequence of steps from verification by simulation to 
actual operation on the real machine without lead times. As a 
result, each designerʼs verification has extended to include 
operation on a real machine with real-time performance 
considerations, accelerating the development of algorithms and 
functions usable for real robots.

2)  Server resource allocation optimization using AWS
Our middlewareʼs operability on virtual machines has made 
copying and initialization easier, reducing the conventional 
workloads of server/network load adjustment and management. 
As a result, it has become possible to complete build/test server 
addition/removal or failure recovery tasks within 30 minutes 
according to the development status.

5.	 Conclusions
A technical issue exists to the early achievement of robots that 
flexibly move in the same space as humans and automate 
nonroutine tasks. One example is the rapid prototyping-based, 
efficient development of robots that flexibly adapt and respond 
to dynamic changes.

For solving this issue, this paper proposed technology 
development middleware that enables rapid prototyping-based 
development of robots with a parallel behavior architecture. 
More specifically, this paper described our proposed 
middlewareʼs characteristics and advantages over conventional 
middleware. Our middleware has enabled scheduling with 
guaranteed multithread real-time performance, which is not 
readily achievable with ROS/ROS2. Moreover, it saves the need 
to consider individual data-sharing methods or scheduling. 
Hence, it follows that this middleware provides higher 
development efficiency to users than OpenRTM-aist.

Moreover, this paper discussed the performance verification 

results and development efficiency of our proposed middleware 
based on a case of applying it and its software development 
environment.

Moving forward, we will further improve our middleware 
and continue delivering innovative robots to the world with a 
view towards the social implementation of robots equipped with 
a parallel behavior architecture.

References
 1) OMRON. “Next-Generation Lab Automation” for Personnel 

Motivation, Pursued by Chugai Pharma, OMRON, and OMRON 
SINIC X.” (in Japanese), OMRON EDGE&LINK. https://www.
omron.com/jp/ja/edge-link/news/688.html (Accessed: Jun. 5, 
2024).

 2) R. Brooks,　“A Robust Layered Control System for a Mobile 
Robot,” IEEE J. Robot. and Automat., vol. 2, no. 1, pp. 14-23, 
1986.

 3) T. Yamamoto and T. Sugihara, “SEAN System of a Biped Robot 
Based on Stacked Modulation Architecture,” in Proc. JSME Annu. 
Conf. Robot. Mechatronics (Robomec), pp. 1A1-D05, 2021.

 4) Quigley Morgan et al.,　“ROS: An Open-source Robot Operating 
System,” ICRA Workshop on Open Source Softw., vol. 3, no. 3.2, 
p. 5, 2009.

 5) S. Macenski et al.,　“Robot Operating System 2: Design, 
Architecture, and Uses in the Wild,” Sci. Robot., vol. 7, no. 66, 
2022.

 6) N. Ando et al.,　“RT-middleware: Distributed Component 
Middleware for RT (Robot Technology),” in IEEE/RSJ Int. Conf. 
Intell. Robots and Syst., 2005, pp. 3933-3938.

 7) Robotic Technology Component Specification, formal/08-04-04, 
2008.

 8) N. Ando et al.,　“A Software Platform for Component-Based 
RT-System Development: OpenRTM-aist,” in Int. Conf. Simul., 
Model., and Program. Auton. Robots, 2008, pp. 87-98.

 9) N. Ando,　“Robotic Middleware Comparison of Real-time 
Processing and Mutual Exclusion,” (in Japanese), J. Robot. Soc. 
Jpn., vol. 34, no. 6, pp. 366-369, 2016.

10) J. Kay.　“Introduction to Real-time Systems.” ROS 2 Design.
https://design.ros2.org/articles/realt ime_background.html 
(Accessed: Jun. 5, 2024).

11) M. Sugaya et al.,　“IXM: Rapid Inter-process Communication 
Middleware for Robotics Software,” J. Inform. Process. Soc. Jpn., 
vol. 58, no. 10, pp. 1578-1590, 2017.

12) OMRON Corporation, NJ/NX-series CPU Unit Software Userʼs 
Manual (SBCA-467Z), (in Japanese), pp. 5-46-5-90.

13) Systems and Software Engineering, ISO/IEC 25010, 2011.
14) H. Durrant-Whyte and T. Bailey,　“Simultaneous localization and 

mapping: Part I,” IEEE Robot. & Automat. Mag., vol. 13, no. 2, 
pp. 99-110, 2006.

15) AWS.　“OMRON Builds R&D HPC Foundation on AWS to Lead 
Innovative Technology Development Using Optimal Computing 
Resources.” (in Japanese), AWS Implementation Case: OMRON 
Corporation | AWS. https://aws.amazon.com/jp/solutions/ 

9



case-studies/omron-case-study/ (Accessed: Jun. 19, 2024).
16) ROS.org.　“urdf.” urdf - ROS Wiki. https://wiki.ros.org/urdf 

(Accessed: Jun. 19, 2024).

About the Authors

MATSUNAGA Daisuke
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

YAMAMOTO Tomoya
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

FUJII Haruka
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

KOJIMA Takeshi
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

The names of products in the text may be trademarks of each company.

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

10


