
MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

Contact : MATSUNAGA Daisuke daisuke.matsunaga@omron.com

Development of Middleware for Rapid
Prototyping of Robots Based on Parallel
Behavior Architecture
MATSUNAGA Daisuke, YAMAMOTO Tomoya, FUJII Haruka and
KOJIMA Takeshi

To realize robots that can move flexibly in human environments and automate nonstandard tasks, it is essential to
parallel process functions like recognition, planning, and control to enhance responsiveness. The parallel behavior
architecture addresses this requirement by executing high-level information processing in upper layers and motion
capabilities in lower layers simultaneously. This structure ensures that upper processing can influence lower
processing as needed, maintaining the responsiveness of the robot application. The authors developed middleware
for robotic technology to enable rapid prototyping of robots with such architectures. This middleware provides
functionalities that require expertise in implementing real-time processing and parallel processing, thereby
streamlining the development process. Additionally, using this middleware, multiple robots with a parallel
behavior architecture were developed in a short period of time. This paper presents the specifications and
advantages of the middleware, comparing it with existing solutions. It also presents performance verification
results and considerations regarding development efficiency using case studies of the middleware and its
development environment.

1.	 Introduction
Against the background of the recent demographic problems,
such as youth population shrinkage and labor shortages, needs
are mounting for robot-driven productivity improvements. In
response, OMRON has been committed to automating routine
work, such as production line work, mainly in the FA field. To
support a broader range of fields/work, OMRON aims to deliver
various robots that flexibly move in the same space as humans
and automate nonroutine tasks1). Developing such robots
involves frequent changes in conditions or tasks. Such changes
are challenging to foresee through the requirement definition
process at the beginning of development. Therefore, a practical
development approach should repeat improvements using rapid
prototyping in response to user feedback.

Robots must reliably perform tasks while flexibly responding
to unknown environments or dynamic environmental changes to
work in the same space as humans. Achieving this goal requires
coordinating the robotʼs internal processes at high cycles, such
as recognition, planning, and control.

Robotsʼ internal processes fall into high-order processes that
handle high-order information, such as recognition/planning,

and low-order processes that realize robot motion functions,
such as motor control. Inputs to the low-order processes are the
outcomes of high-order processes. Hence, the former processes
depend on the latter. In addition, dependency exists among
high-order processes, such as the planning and recognition
processes. In conventional sequential execution methods
directly modeled on these relationships, high-order processes
cannot rate-control low-order processes to realize periodicity
thereto, resulting in the problem of reduced responsiveness of
robot applications. Brooksʼ Subsumption Architecture2) and
Yamamoto-Sugiharaʼs Stacked Modulation Architecture3)
presented a direction for tackling this problem (Fig. 1). These
parallel behavior architectures independently and parallelly
execute high- and low-order processes so that high-order
processes act on low-order processes as necessary. Therefore,
these architectures can ensure the systemʼs responsiveness
without preventing low-order processes from executing robot
motions. Achieving these architectures requires software that
supports flexible multiple-controller implementation and
multithread scheduling.

1

OMRON TECHNICS Vol.57.008EN 2025.5

Fig. 1	 Execution methods per the conventional and parallel behavior architectures

On the other hand, a look at the aspect of robot software
development reveals that implementing functions requiring expert
knowledge can often pose bottlenecks in deployment pipelines.
For instance, implementing motor control and other cyclic
processes requires considering real-time performance. A parallel
behavior architecture requires thread-safe implementations
involving no data conflicts and/or deadlocks, analyses of
parallel processing-induced malfunctions, and implementation
modifications. These tasks also require expert knowledge.
Moreover, rework may occur because of the changing the
execution environment, including the hardware or operation
system (OS), while improvements are repeated for the robot
system.

Software componentization and openization have been
underway, aiming to improve robot development efficiency.
However, no middleware has been made available with a
primary focus on parallel process scheduling, whereby robots
with a parallel behavior architecture are challenging to develop
efficiently. Generally, enhancing software development
efficiency requires improving software quality characteristics,
such as maintainability and portability.

Based on the above circumstances, we developed robotics
technology development middleware that reconciles achieving
the aforementioned architecture and enhancing robot
development efficiency. Our middleware makes it easier to solve
the challenges in developing software for robots with a parallel
behavior architecture, such as achieving real-time performance,
preventing data conflicts, and changing the execution
environment.

Achieving real-time performance requires various settings,
including execution cycles, priorities, and CPU core
assignments. This task demands expertise specific to OS/
execution environment-dependent embedded developments.
Moreover, these settings should be easily adjustable for rapid
prototyping-based development. Hence, our middleware
provides a multithread scheduling function to perform these
settings easily. This function turns the concept of real-time
processing into a model used to make various settings via the
middlewareʼs interface. Consequently, it has become possible to
implement or reconfigure real-time processing without OS- or
execution environment-related knowledge, enabling flexible
adaptability to specification changes during development.

Data conflict prevention has been achieved by our
middlewareʼs inter-thread instruction transmission/reception
function and pub/sub model-based data-sharing function.
Integrating countermeasures against data conflicts during inter-
thread access into these functions has enabled developers to
achieve inter-thread access without considering data conflicts.

To solve the challenge of execution environment switching,
we enabled cross-development in OS environments independent
of development targets. This approach allows implementations
in environments different than the target environment or bug
analysis in debugging-friendly hardware/OS environments. We
obtained this achievement by providing our middleware with an
OS abstraction layer.

This paper compares our middleware with conventional
methods and explains its advantages and usefulness. It also
discusses the performance verification results and development
efficiency based on a case of applying our middleware and its
development environment.

2.	 Existing robot middleware
This section presents the ROS and RT-middleware, both
representative of widely used middleware of the same category,
and discusses the problems in each middleware.

2.1	 ROS
The Robot Operating System (ROS)4) is open-source
middleware developed by Willow Garage for robot system
development and the eco-system for development environment
tool sets and deliverables that use the middleware. Now, it is
maintained and administered by Open Robotics, a nonprofit
organization. It serves as a basis for implementing various
functions as units called nodes, which communicate with each
other via P2P, thereby achieving robot systems. ROS is
currently most broadly used in research and development
venues for the following reasons: it enables building such
loosely coupled systems, it abounds in development
environment tool sets, its eco-system serves as an arrangement
for publishing and sharing modules, it uses a BSD license,
which does not require source code disclosure as long as the
license conditions are met.

Developers are currently working on a next-generation
version called ROS25). This version is being newly developed
based on the results of a requirement review as the requirement
definitions established in the early days of ROS development
are growing obsolete. The main differences from the previous
version include supporting multiple robot control, embedded
systems, and real-time control.

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

2

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

2.2	 RT-middleware
RT-middleware (RTM)6) is a software platform for building
systems that use robots or robotics technologies (RT) developed
mainly by the National Institute of Advanced Industrial Science
and Technology (AIST).

RTM allows the construction of robot systems by combining
software modules that have been componentized. These
software modules are called RT components (RTC). The
interface specifications are standardized by the Object
Management Group (OMG) as official standards7).

Moreover, RTM has been adopted as a development
infrastructure for the Next-Generation Robot Intelligentization
Technology Development Project under the Incorporated
Administrative Agency New Energy and Industrial Technology
Development Organization (NEDO).

OpenRTM-aist8) is a software platform developed and
distributed by AIST that includes the implementation of
RT-middleware. It consists mainly of RTC execution
management middleware, an RTC implementation framework,
and a software development environment. With RTC
frameworks and management functions made available, users
can concentrate on core logic development.

2.3	 Problems in existing middleware
ROS features a high degree of independence in processing units
called nodes. Hence, it follows that ROS suits parallel process
execution for achieving a parallel behavior architecture.
However, its node processing and inter-node communication do
not support real-time processing9). Hence, ROS does not suit our
project herein, which intends to control highly responsive
robots. ROS2 claims to support real-time control. However,
real-time performance improvement has extended only to
communication-related aspects but not beyond10). Accordingly,
ROS cannot guarantee real-time performance and suffice for our
objective of achieving a highly responsive robot system. The
probable cause is that ROS is a framework intended to develop
robot systems that include robots as components rather than
control robots per se.

The OpenRTM-aist, an implementation of RT-middleware,
uses a unit of processing called the RTC. The RTCs have a high
degree of independence, similarly to the nodes in ROS. The
OpenRTM-aist supports the real-time processing of node
handling/communication. Hence, it follows that the OpenRTM-
aist is designed suitably for our intended purpose of achieving
highly responsive robots. However, achieving a parallel
behavior architecture or similar configurations requires the
following tasks for all the RTCs to be executed in real time with
a patch applied to the kernel to make the standard OS (Ubuntu)

real-time:

• Implement conversions to/from real-time and non-real-time
processing before and after cycle execution portions,

• Set the execution cycle and the assignment to the context
for each priority and

• Set the data transmission/reception method to suit its own
internal process cycle or the sender/receiver-side cycle to
prevent delays in cycle execution.

Such implemented systems differ from those that RTM
inherently assumes, which are configured as networks of
independent modules. Therefore, these configuration tasks are
not supported by the standard framework and development
environment and must be addressed and shouldered by the
middleware users themselves11).

3.	 Our proposed method
3.1	 Requirements for our middleware
This subsection presents the primary requirements for solving
the problems described in the previous chapter. It also
summarizes the requirements for the middleware as a whole,
which are necessary to enable rapid prototyping for each quality
characteristic.

3.1.1	 Primary requirements
1)  Multithread scheduling
The middleware shall provide a multithread scheduling function
that enables explicit high-priority assignments and system
resource allocations to threads requiring high real-time
performance, thereby reducing the influences thereon from other
threads.

2)  Data conflict prevention
The middleware shall provide an inter-thread instruction
transmission/reception function and a pub/sub model-based
data-sharing function. Countermeasures against data conflicts
during inter-thread access shall be consolidated into these
functions to provide thread-safe and non-blocking data-sharing
arrangements.

3)  Multiplatform support
The middleware shall have an OS abstraction layer to allow
cross-development in development target-independent OS
environments. This approach enables bug analysis on
implementation/debugging-friendly OS/hardware environments
different than the target environment.

When determining the specifications for the thread cycle

3

execution processing in Primary Requirement 1 and the data
sharing in Primary Requirement 2, we used the task and
variable synchronization functionsʼ behavior12) specified for our
machine automation controller, the NJ/NX CPU unit, for
reference.

3.1.2	 Requirements for the middleware as a whole
This sub-subsection classifies the requirements for our
middleware in accordance with the ISO/IEC 25010 software
quality characteristics model13). Our middleware enables rapid
prototyping and places weight on improving technology
development productivity. As such, it does not consider the
characteristics required of products, such as functional
suitability, reliability, and security. Table 1 lists the required
quality characteristics along with the requirements necessary for
improved development efficiency, in other words, those for
development environments and development support functions.

Table 1  Requirements for our middleware

Quality characteristics Requirements

Performance efficiency Allow multithread scheduling with a mixed inclusion
of real-time and non-real-time processes.

Maintainability Adaptable to robots with various kinematics through
minimum modifications.

Compatibility Connectable to external systems.

Portability Operational on multiple platforms (multiple OS
environments).

Usability

Enable development using high-level programming
languages.

Support building all such processes as recognition,
planning, and control into a single system.

Others Support CI (Continuous Integration)/CD (Continuous
Delivery) in development environments.

3.2	 Descriptions of functions
This subsection explains our middlewareʼs primary functions,
which meet the requirements presented in the previous
subsection, and its auxiliary functions, which are integrations of
the software requirements necessary to achieve rapid
prototyping. Primary Functions 1 and 2 meet performance
efficiency-related quality requirements, while Primary Function
3 meets portability-related quality requirements.

3.2.1	 Primary functions
1)  Multithread scheduling function
This function schedules process execution sequences based on
the execution cycle/priority and scheduling method of each
process. Parameters, such as cycle, priority, and scheduling
method, can be set as desired by the developer to suit the
desired system. This functional specification places weight on
flexible execution scheduling, unlike conventional methods.

This function enables building a system that parallelly
executes processes (such as the motor control part) that require
real-time performance and other processes. The　“real-time
performance” herein means that a process takes place without
delay at a constant cycle at expected times, constituting a
necessary requirement for important processes for robot control.
For example, a delay in the motor control part delays the
tracking of motor command values, reducing robot position
accuracy and path-tracking performance.

Fig. 2 schematically outlines the multithread scheduling
function. The periodic and nonperiodic threads shown in Fig. 2
are generated based on the specified scheduling method. The
execution processes executed in parallel (“proc#N” in Fig. 2)
are assigned to threads as specified by the developer.

Fig. 2  Outline of multithread scheduling

2)  Data-conflict prevention functions
The following two functions prevent inter-thread data conflicts:

①  Inter-thread instruction transmission/reception function
General-purpose interface-based access (command function) is
achieved to allow access to the middlewareʼs internal modules
from threads or other processes. The middleware allows a
command receiver thread to stay resident to start each moduleʼs
command execution thread upon command reception,
guaranteeing the command execution sequence and ensuring the
threadsʼ execution. Moreover, two command transmission
methods, one synchronous and the other asynchronous, are used
to reconcile commands requiring such consecutive execution as
with robot motions and those requiring no such sequentiality as
with robotsʼ internal status indication.

• Synchronous: After command transmission, the caller
process is blocked until the callee accepts the command and
receives the results. To be used when required to
synchronize the caller process with command execution.
Unsuitable for long execution time commands. In no
periodic thread shall synchronous command transmission be

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

4

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

attempted. Failure to comply results in a blocked process.
• Asynchronous: After command transmission, the caller

process becomes nonblocking when the callee accepts the
command. The results are called back to a function
registered at a specified command transmission time.
Intended to be used for long execution time commands or
in periodic threads.

The middleware includes a gadget that uses thread-safe
queues for primary acceptance of commands to ensure that the
middlewareʼs internal modules receive commands on periodic
threads, thereby minimizing the critical section of each periodic
thread to reduce negative impacts on real-time performance.

② Data-sharing function
This function guarantees data change timing and provides
access protection from other threads while maintaining inter-
thread data consistency. The pub/sub model, also used in ROS
and RT-middleware, is used to ensure each threadʼs data
concurrency (Fig. 3). More specifically, this function defines the
data used on individual threads as those to be published to or
subscribed to from other threads, thereby ensuring publication
after thread execution and subscription before thread start.
Consequently, these data are updated before each threadʼs
execution, ensuring the identity of the subscribed data during
each threadʼs execution.

Fig. 3  Conceptual diagram of data sharing

3)  Multiplatform support
The dependency between the operating system (OS) or
hardware and the middleware should be reduced. Generally, the
OS/hardware environment is often not fixed at the start of
robotics technology development. Moreover, changes are often
made to these environments during development. Therefore, the
implementation process should use a development target-
independent, implementation-friendly OS/hardware environment
to pursue developments. The real-machine verification process
should be flexibly adaptable to the target OS/hardware
environment. Accordingly, an operating system abstraction layer
(OSAL) is provided to abstract OS-specific processes to enable
flexible switching between different operating systems (OS). A

similar abstraction layer for abstracting hardware is provided to
enable verification without hardware.

3.2.2	 Auxiliary functions
This subsection describes the auxiliary functions one by one for
each quality characteristic required of our middleware.

1)  Maintainability
Fig. 4 shows the software architecture schematic. The software
architecture consists of an application part corresponding to a
user interface or debugger, a robot framework part (our
proposed middleware), an OS part, and a hardware part. The
robot framework includes function modules implemented with
robot-specific features; a runtime for coordinating basic
functions, such as scheduling, communication, and resource
management; and an OSAL. Recognition, planning, control, and
other robot-specific features are individually modularized/
librarized in the function modules and structured to be plugged
in. The resulting structure allows operation with a minimum
module configuration on a desired system, achieving improved
maintainability and reduced required computational resources.

Fig. 4  Software architecture schematic

2)  Compatibility
For functions outside the scope of technology development,
external systems are used to reduce implementation man-hours
and promote rapid prototyping. Therefore, a communication
function with external systems is provided to exploit existing
functions available from external systems, such as third-party
software. Our middleware provides a communication function
with ROS, allowing access to various systems that support
ROS.

5

3)  Usability/others
Our middleware supports cross-development and CI/CD
environments. Achieving rapid prototyping in robotics
technology developments requires turning the cycle of
algorithm development and actual machine verification at high
cycles. Accordingly, our middleware supports high-level
language-friendly, Windows-based development environments
or open-source, research-friendly Ubuntu-based development
environments for algorithm development processes. Developers
use these environments to perform implementations and
simulations. Development deliverables undergo automated
testing through a CI environment. On the other hand, the real-
machine verification process auto-generates binaries for target
environments through a CD environment. These resulting
advantages reduce developersʼ workloads and human errors in
simulation- or prototype-based preliminary verifications and
actual robot verifications, achieving improved development
efficiency.

4.	 Verification results
Based on a case of applying our middleware and its
development environment, this section discusses our proposed
robot middlewareʼs performance verification results and
development efficiency.

4.1	 Verification environment
4.1.1	 Robot system
This subsection presents an example of a mobile manipulator
system built with our proposed robot middleware. Fig. 5 shows

its outward appearance. A robot arm with eight degrees of
freedom was installed on a wheeled mobile platform with two
degrees of freedom. The wheeled platform and the arm end
were fitted with an environment and object recognition camera.

Fig. 5  Development case: External appearance of the mobile manipulator

Fig. 6 shows the internal configuration of our robot system. It
consisted of cameras (vision sensors), an external-world
recognition PC (environment recognition PC), a control PC and
motors for wheel and arm operation (control PC and motors),
and external sensors (sensors). This system executed self-
position estimation (self-location estimation), path generation
(path planning), path tracking (navigation), control (control), I/
O control (I/O control), and motor command communication
processing (motor control) in parallel, using simultaneous
localization and mapping (SLAM)14) to achieve the desired
moving motions.

Fig. 6  Development case: Mobile manipulator system

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

6

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

Other than self-position estimation, processes were executed
as periodic processes on the real-time OS control PC. Of these
processes, the path planning and navigation processes, involving
mathematical optimization and, hence, significant execution
process time variations, were defined as a 128 [ms/cycle] thread
with a long execution cycle. On the other hand, the control, I/O
control, and motor control processes, requiring high real-time
performance, were defined as a 1 [ms/cycle] and an 8 [ms/
cycle] thread, respectively, with a short execution cycle. These
periodic threads exchange data via the middlewareʼs data-
sharing function. For scheduling, the settings file was used to
specify the cycle, priority, and execution thread.

Self-position estimation was executed as a nonperiodic
process on the non-real-time OS environment recognition PC
for reasons, such as a significantly longer required execution
process time than the execution cycle or interfacing with
sensors. This process was implemented in ROS to perform
asynchronous communication with the control PC through the
middlewareʼs ROS communication function. Our robot system
operated upon receipt of instructions from human-machine
interfaces (HMI). The middlewareʼs command function was
used for motion instructions from HMIs.

4.1.2	 Development environment
We built a development environment that executes such CI/CD
jobs as in Fig. 7 to achieve improved development efficiency
through multiplatform support. The algorithms and functions
developed were controlled as function modules on GitLab to
perform automated building/testing of pushed source code. The
design quality was ensured by performing automated testing on
execution binaries tailored to execution environments supported
by our middleware.

The CI-CD build/test environment was built of a combination
of a virtual machine on Amazon Web Services (AWS)15) and an
actual machine for deploying development deliverables. The

virtual machine ran a docker to build and start CI environment
containers.

4.2	 Verification results and discussions
This subsection presents the results and discussions for each
quality characteristic required of our middleware.

4.2.1	 Performance efficiency
This sub-subsection discusses the performance efficiency of our
built system when operating in an actual environment. The
measurement environment used was a control PC installed with
a VxWorks OS, an Intel Core i7-1165G7 2.8 GHz CPU, and 64
GB of memory.

1)  Multithread scheduling
Fig. 8 shows a thread execution process for our built system
during mobile manipulator travel. We obtained this information
using the Wind River Workbench, a VxWorks integrated
development environment (IDE).

Fig. 8 represents each threadʼs execution state in thick green
lines and stand-by state in wavy lines. Each threadʼs name and
priority are stated on the left side in Fig. 8, indicating that
threads with smaller priority values were executed with higher
priority. From top to down, 1 ms interrupts for periodic thread
generation, (Interrupt 200), motor control, I/O control, control,
and noncyclic threads 1, 2, ..., 5 are shown. Noncyclic threads
were generated every time the inter-thread instruction
transmission/reception function or the data-sharing function
described in 3.2.1-2) and , respectively, was executed. Hence,
several tens of threads were sometimes simultaneously
generated. Fig. 8 demonstrates that multiple noncyclic threads
(noncyclic threads 1 through 5), which significantly varied in
execution process time, and the motor control, I/O control, and
control threads, which strongly demand real-time performance,
were stably and cyclically executed in an execution sequence

Fig. 7  Development environment

7

with an as-expected execution priority. Fig. 8 does not show the
planning and navigation threads (128 ms cycle) for notational
reasons.

2) Real-time performance
Table 2 shows the execution time statistics information
(minimum, maximum, mean, and standard deviation) for the
motor control, I/O control, and control threads, which strongly
demand real-time performance:

Table 2  Execution time statistics information

Thread name
(cycle [ms]/priority)

Minimum
[ms]

Maximum
[ms]

Mean
[ms]

Standard deviation
[ms]

Motor control (1/94) 0.066 0.117 0.074 0.006

I/O control (1/95) 0.163 0.229 0.172 0.011

Control (8/96) 0.211 0.369 0.276 0.031

Our robot system achieved periodic processing by executing
threads at intervals specified based on 1 ms interrupts. The
interrupt handling statistics data show that stable interrupts were
achieved with a minimum value of 0.991 [ms], a maximum
value of 1.009 [ms], a mean of 1.0 [ms], and a standard
deviation of 0.001 [ms]. As shown in Table 2, each thread had a
maximum value of less than one cycle, causing no spike that
exceeded the cycle execution time. The standard deviation
column shows that the motor control, I/O control, and control
threads had a standard deviation of 0.006, 0.011, and 0.031
[ms], respectively, showing less variability in descending order
of priority. The above confirms that threads requiring real-time
performance were cyclically executed with stability.

4.2.2	 Maintainability
In our robot system, robot-specific features were implemented
and librarized in the function modules, as shown in Fig. 4.
Meanwhile, shared features were achieved by loading necessary
libraries for our middleware. Consequently, the robot designer
was able to focus on developing the function module for the

robots under their charge. As a result, two-armed robots were
successfully developed concurrently with the theme under
which our mobile manipulator was developed, confirming that
our middleware can serve as a common framework for various
robots.

4.2.3	 Compatibility
The self-position estimation process was executed on a PC
different from the control PC as shown in Fig. 6. We
successfully developed the controls for this process and external
sensors in a short period, using the ROS abundant with image
processing libraries and sensor drivers. Using the
communication function with the ROS, we easily imported this
function into the robot system, confirming that we achieved
improved development efficiency.

4.2.4	 Portability
The command function allows access to module-specific
functions in the runtime and function modules, whereby we
improved development efficiency using verification tools suited
for each development phase. For example, we were able to do
the following, among other things: checking data published/
subscribed via the data-sharing function during the runtime
development phase, monitoring motor input/output values
during the robot control functionʼs development phase, and
checking robot behaviors simulated by the robot simulator
during the planning function development phase.

Besides, the command function, designed to be multiclient
compatible, allows the simultaneous use of multiple tools as
needed. Consequently, verification tools developed by individual
function developers for their own work became readily
available for reuse by others, enabling efficient analysis of
problems encountered after the system became complicated as
the development progressed.

Of these verification tools, those developed by individual
developers were shared via CI environments to be improved by

Fig. 8  Parallel thread scheduling

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

8

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

other developers in a virtuous cycle. As a result, robot simulator
tools have become so functionally sophisticated that they can
visualize/verify random robots in virtual spaces. Visualized
models of robots can be described in the Unified Robot
Description Format (URDF)16), a general-purpose robot
description format. As such, they can be diverted to other future
development themes and will be deployed together with our
middleware.

4.2.5	 Usability/others
1)  GitLab-based CI (automatic build/test)
With this CI environment, the automated testing and execution
binary generation for function modules developed by designers
on the OS of their choice became performable on the actual
machine in the target environment. Consequently, we achieved a
seamless sequence of steps from verification by simulation to
actual operation on the real machine without lead times. As a
result, each designerʼs verification has extended to include
operation on a real machine with real-time performance
considerations, accelerating the development of algorithms and
functions usable for real robots.

2)  Server resource allocation optimization using AWS
Our middlewareʼs operability on virtual machines has made
copying and initialization easier, reducing the conventional
workloads of server/network load adjustment and management.
As a result, it has become possible to complete build/test server
addition/removal or failure recovery tasks within 30 minutes
according to the development status.

5.	 Conclusions
A technical issue exists to the early achievement of robots that
flexibly move in the same space as humans and automate
nonroutine tasks. One example is the rapid prototyping-based,
efficient development of robots that flexibly adapt and respond
to dynamic changes.

For solving this issue, this paper proposed technology
development middleware that enables rapid prototyping-based
development of robots with a parallel behavior architecture.
More specifically, this paper described our proposed
middlewareʼs characteristics and advantages over conventional
middleware. Our middleware has enabled scheduling with
guaranteed multithread real-time performance, which is not
readily achievable with ROS/ROS2. Moreover, it saves the need
to consider individual data-sharing methods or scheduling.
Hence, it follows that this middleware provides higher
development efficiency to users than OpenRTM-aist.

Moreover, this paper discussed the performance verification

results and development efficiency of our proposed middleware
based on a case of applying it and its software development
environment.

Moving forward, we will further improve our middleware
and continue delivering innovative robots to the world with a
view towards the social implementation of robots equipped with
a parallel behavior architecture.

References
 1) OMRON. “Next-Generation Lab Automation” for Personnel

Motivation, Pursued by Chugai Pharma, OMRON, and OMRON
SINIC X.” (in Japanese), OMRON EDGE&LINK. https://www.
omron.com/jp/ja/edge-link/news/688.html (Accessed: Jun. 5,
2024).

 2) R. Brooks,　“A Robust Layered Control System for a Mobile
Robot,” IEEE J. Robot. and Automat., vol. 2, no. 1, pp. 14-23,
1986.

 3) T. Yamamoto and T. Sugihara, “SEAN System of a Biped Robot
Based on Stacked Modulation Architecture,” in Proc. JSME Annu.
Conf. Robot. Mechatronics (Robomec), pp. 1A1-D05, 2021.

 4) Quigley Morgan et al.,　“ROS: An Open-source Robot Operating
System,” ICRA Workshop on Open Source Softw., vol. 3, no. 3.2,
p. 5, 2009.

 5) S. Macenski et al.,　“Robot Operating System 2: Design,
Architecture, and Uses in the Wild,” Sci. Robot., vol. 7, no. 66,
2022.

 6) N. Ando et al.,　“RT-middleware: Distributed Component
Middleware for RT (Robot Technology),” in IEEE/RSJ Int. Conf.
Intell. Robots and Syst., 2005, pp. 3933-3938.

 7) Robotic Technology Component Specification, formal/08-04-04,
2008.

 8) N. Ando et al.,　“A Software Platform for Component-Based
RT-System Development: OpenRTM-aist,” in Int. Conf. Simul.,
Model., and Program. Auton. Robots, 2008, pp. 87-98.

 9) N. Ando,　“Robotic Middleware Comparison of Real-time
Processing and Mutual Exclusion,” (in Japanese), J. Robot. Soc.
Jpn., vol. 34, no. 6, pp. 366-369, 2016.

10) J. Kay.　“Introduction to Real-time Systems.” ROS 2 Design.
https://design.ros2.org/articles/realt ime_background.html
(Accessed: Jun. 5, 2024).

11) M. Sugaya et al.,　“IXM: Rapid Inter-process Communication
Middleware for Robotics Software,” J. Inform. Process. Soc. Jpn.,
vol. 58, no. 10, pp. 1578-1590, 2017.

12) OMRON Corporation, NJ/NX-series CPU Unit Software Userʼs
Manual (SBCA-467Z), (in Japanese), pp. 5-46-5-90.

13) Systems and Software Engineering, ISO/IEC 25010, 2011.
14) H. Durrant-Whyte and T. Bailey,　“Simultaneous localization and

mapping: Part I,” IEEE Robot. & Automat. Mag., vol. 13, no. 2,
pp. 99-110, 2006.

15) AWS.　“OMRON Builds R&D HPC Foundation on AWS to Lead
Innovative Technology Development Using Optimal Computing
Resources.” (in Japanese), AWS Implementation Case: OMRON
Corporation | AWS. https://aws.amazon.com/jp/solutions/

9

case-studies/omron-case-study/ (Accessed: Jun. 19, 2024).
16) ROS.org.　“urdf.” urdf - ROS Wiki. https://wiki.ros.org/urdf

(Accessed: Jun. 19, 2024).

About the Authors

MATSUNAGA Daisuke
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

YAMAMOTO Tomoya
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

FUJII Haruka
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

KOJIMA Takeshi
Voyager Project Dept. Robotics R&D Center
Technology and Intellectual Property HQ.
Speciality: Software Engineering

The names of products in the text may be trademarks of each company.

MATSUNAGA Daisuke et al.� Development of Middleware for Rapid Prototyping of Robots Based on Parallel Behavior Architecture

10

