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In recent years, with the trend of machine learning, there has been an increase in the application of anomaly 
detection using machine learning to predict product defects in Factory Automation (FA) domain. However, 
because of the diversification of products and the efficiency of the manufacturing processes, frequency of the 4M 
(Man, Machine, Material, Method) changes have increased. If the anomaly detection model, which was 
operational before the 4M changes, continues to be used, false detections happen. And they can lead to an 
increase in product defects.

This phenomenon, where the relationship between input data and inference results changes during the operation 
of anomaly detection from the time of learning, is referred to as concept drift. Previously, concept drift by 4M 
changes has been measured using such means as averages. However, these methods have been problematic 
because of delayed detection and issues with real-time performance.

This paper proposes a method that integrates multiple anomaly detection models by considering causal 
relationships, thereby achieving both the prediction of product defects and the detection of concept drift caused 
by 4M changes. Furthermore, the effectiveness of the proposed method was verified using an injection molding 
machine utilized at the manufacturing sites.

1.	 Introduction
Following the recent spread of machine learning, the factory 
automation (FA) field has seen increases in the examples of 
machine learning-based product defect prediction used at 
manufacturing sites. In many cases, manufacturing sites operate 
anomaly detection tools suitable for small amounts of defect 
label data to improve their quality ratios. Omron has also 
commercialized an AI-equipped machine automation 
controller1). This product provides anomaly detection using 
sensing data inputs collected from manufacturing equipment.

However, recent diversified products and complicated 
manufacturing technologies have led to increasingly more 
frequent encounters with 4M changes, which refer to changes in 
the man, machine, material, and method at FA manufacturing 
sites. Continuously operating an outdated anomaly detection 
model, even after a 4M change, can result in false detections. A 
delayed response to this problem leads to a higher product 
defect rate.

Factors in the 4M changes may cause the relationship 
between input data and inference results to change during an 
anomaly detection operation from what it was at the point of 
pre-operational learning. Such a change is called a concept 

drift2). Conventional measures to address such a problem 
include moving average-based methods and the average-run-
length (ARL) method, the latter of which evaluates the 
sequences of highs/lows relative to the center values on control 
charts3). However, these methods have problems with real-
timeliness, operational skills, and workloads.

With causality in mind, we identified a group of variables 
representing product defect factors and a group of 4M-change 
variables affecting them. In this paper, we propose a method 
that integrates multiple anomaly detection models generated 
from each group of variables. Our proposed method aims to 
achieve compatibility between product defect sign detection and 
4M change-induced concept drift detection. In this paper, we 
also present the results of a verification experiment performed 
using an injection molding machine found on manufacturing 
sites to demonstrate that our proposed method can detect both 
types of events.

2.	 Challenge
This section first outlines the behavior of the system of interest. 
It then explains the challenge posed by concept drifts 
encountered while detecting anomalies under analysis.
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2.1	 System of interest
Fig. 1 shows the injection molding machine of interest.

Fig. 1  Injection molding machine

This injection molding machine injects plasticized and 
molten resin in the mold (highlighted red in Fig. 1) into the pipe 
(left in Fig. 1) rapidly under high pressure, enabling precision-
mass production of plastic parts with complex shapes4). It also 
characteristically accommodates multi-type production by 
adjusting the injection condition changes for each product type. 
However, if it fails to fill sufficient resin into the mold due to 
improper settings or residual resin on the screw, defective 
products may result. The variables of pressure, time, and 
injection rate are monitored to detect any signs of defective 
products. When any preset threshold is exceeded, corrective 
measures, such as machine setting adjustment or cleaning, can 
be implemented before a defect occurs.

2.2	 Challenge
Approximately 70 different types of variables exist that 
represent molding defect factors. These variables include those 
mentioned in the previous subsection, in other words, pressure, 
time, and injection rate. The conventional response to defects 
encountered under specific conditions is to select variables with 
a high contribution based on decision-tree importance scores 
and build an anomaly detection model to monitor signs of 
molding defects5). In the case of anomaly detection, only normal 
data are necessary to build a learning model. Hence, it is an 
effective method for manufacturing sites with lesser defect data. 
This method is adopted for the AI-equipped machine 
automation controller, one of Omronʼs products. Fig. 2 shows an 
example of anomaly detection performed using a similar 
conventional method.

The upper graph in Fig. 2 shows an anomaly score as the 
anomaly detection index, while the lower graph shows one of 
the explanatory variables representing the anomaly detection 
model. Molding defect sign detection was performed with this 
model set to an anomaly score threshold of 0.555. The left/first 
half of the upper graph in Fig. 2 shows anomaly detection 

results obtained as intended. However, the right/second half 
shows the threshold constantly exceeded for the 114th and 
subsequent shots. The cause was the change in the product type 
produced with the 114th and subsequent shots. As a result, 
anomalies after the type change became impossible to detect 
correctly. Relearning at the point of the 114th shot was 
necessary to detect defects after the type change. At this point, 
however, whether to perform relearning was impossible to 
determine. Hence, production continued for a long time without 
detecting defects. Immediate type change detection followed by 
relearning would reduce product defect rate. Hence, our 
challenge was to detect type changes while molding defect sign 
detection was in operation.

2.3	 Requirements for our proposed method
The previous section defined concept drift as a change in the 
input data-inference result relationship between the point of 
learning and during an anomaly detection operation. Concept 
drifts fall into those that gradually change over time and those 
that abruptly change. The latter category includes 4M changes, 
such as a change in the product type to be manufactured. The 
molding machine of interest is required to support real-time 
defect sign detection to prevent defective product production.

Accordingly, the challenge presented in the previous 
subsection can be solved by a method that detects abrupt 
concept drifts during anomaly detection operations at a 
manufacturing site.

The conventional method that most likely comes first to mind 
is one that detects states with a continuously exceeded 
threshold. Specifically, the method would be based on moving 
average or control chart ARL. However, a moving average-
based method would be too slow in response to track abrupt 
changes and, hence, unsuitable in terms of real-timeliness. 
Meanwhile, an ARL-based method would be challenging skill-
wise because its control values and other non-threshold 
parameters are hard to determine. Accordingly, a desirable 
method should eliminate the need for parameter adjustment, 
allowing for skill-free operation.

An alternative idea may be to build an anomaly detection 
model for each product type. However, most injection molding 
machines accommodate more than ten types to cope with recent 
product diversification. Building and operating an anomaly 
detection model for each type would pose operational 
workload-related problems, including data management, model 
generation, and threshold settings. Hence, a desirable solution 
should include a single anomaly detection model to monitor 
during operation.

From the above, our proposed solution should first and 
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foremost require concept drift detection with real-timeliness. 
Additional requirements should include skill-free operation 
involving no parameter adjustment and compatibility between 
product defect sign detection and type change detection as 4M 
changes.

3.	 Our proposed method
3.1	 Outline of our proposed method
We adopted the Isolation Forest algorithm6) from a broad range 
of anomaly detection algorithms7) for our proposed method. The 
Isolation Forest features high-speed inferencing and supports 
real-time detection. Besides, its operation requires no 
consideration of non-threshold parameters and involves few 
problems with operational skills. This paper considers using the 
Isolation Forest to establish compatibility between product 
defect sign detection and type change detection as 4M changes 
and integrate them into a unified anomaly detection model. The 
Isolation Forest only requires setting a threshold for defect sign 
detection and another for type change detection that enables 
reduced operational workloads, less demanding skills, and 
improved real-timeliness.

In what follows, Subsection 3.2 outlines the Isolation Forest, 
Subsection 3.3 explains the effect and factor identification 
process, respectively, for product type and defect factors, 
Subsection 3.4 describes the anomaly detection integration 
process, and Subsection 3.5 presents our method for anomaly 
score calculation.

3.2	 Outline of the Isolation Forest
The Isolation Forest is an anomaly detection algorithm that 
builds a model from unlabeled learning data and classifies data 
into normal and abnormal data based on data sparsity/density. 
Whether data are sparse or dense is determined based on the 
required number of partitions to split the data until each point is 
isolated. A relatively small number of partitions is required to 
split the sparse region points until each point is isolated as 
shown in Fig. 3a). Meanwhile, a larger number of partitions is 
required to do the same to the dense region points as shown in 
Fig. 3b). As shown in Fig. 4, the required number of partitions 
is the depth of a binary tree based on which the anomaly score 
calculation is performed.

Fig. 3  Data splitting using partitions

Fig. 2  Anomaly detection results
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Fig. 4  Binary tree representation of data splitting

The binary tree is built from the sampled learning dataset X = 
{x1, x2, x3, ... xn} to calculate the anomaly score by Eq. (1) from 
the depth information of the data to be evaluated. More 
specifically, the following operation is performed:
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where h(x) represents the depth of the evaluation point x in the 
binary tree built of n points of sampled data; for example, in a 
set of 256 (= 28) points of sampled data, the binary tree can 
have a depth of 1 to 8 E(h(x)), the expected depth value of the 
evaluation point x in multiple binary trees is normalized, 
whereby the anomaly score takes a range of (0,1]. A threshold is 
set for this anomaly score to perform anomaly detection. 
Incidentally, γ is the Eulerʼs constant ( ≈ 0.57721).

3.3	 Identification of effects and factors
This subsection describes how variables representing product 
defects and type change factors are identified.

3.3.1  Identification of product defect factors
The first things to identify are the factors leading to molding 
defects. Let a set of variables collected from the molding 
machine be measured data. Fig. 5 shows how these variables 
(var1, var2, var3, var4, …) are involved in the occurrence of a 
molding defect.

A set of variables representing the identified molding defect 
factors is calculated by Eq. (2) below:

 X x x Thdefect factors defect factors defect fac   | ( )Importance ttors  (2)

where x is a set of variables, including temperature and pressure 
collected from the molding machine. Importancedefect-factors 
calculates the Random Forest importance of x with defective  
and non-defective products labeled discrete variables. Xdefect-factors 
is a set of variables conditioned by a user-defined threshold 
Thdefect-factors for the importance thus calculated.

3.3.2  Identification of the variables affected by a product 
type change

The next things to identify are the variables affected by a 
product type change. Fig. 6 shows how a type change affects the 
variables collected from the molding machine.

The variables affected by the type change consist of the 
variables representing the molding defect factors (var1, var2, 
var3, var4) shown in Fig. 5 and variables not representing 
molding defect factors (var11, var12, var13, var14, …).

Then, a set of variables affected by the type change is 
calculated by Eq. (3):

 X x Importance Thxtype factors type factors type factors    | ( )  (3)

Xtype-factors, the set of variables affected by the type change, is 
the importance conditioned by a user-defined threshold with 

Fig. 5  Molding defect factors

Fig. 6  Effects of a type change
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respect to x with the type labeled with discrete variables, 
similarly as in Eq. (2).

3.4	 Anomaly detection model generation
This subsection describes the process of generating anomaly 
detection models for quality defect sign detection and type 
change detection. As shown in Fig. 7, the quality defect sign 
detection model (Anomaly Model 1) consists of a set of 
variables affected by a type change and representing defect 
factors. The type change detection model (Anomaly Model 2) 
consists of a set of variables affected by the type change but not 
representing defect factors.

3.4.1  Anomaly detection model for product defect signs
Eq. (4) represents the learning data for the anomaly detection 
model for product defect sign detection:

 X X Xanomaly model defect factors type factors   1  (4)

Thus, Xanomaly-model1 is the Cartesian product of the product 
defect factorsʼ and product typeʼs effects.

Then, Eq. (5) shows the calculation method for our modelʼs 
anomaly score, sanomaly-model1:
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where xanomaly-model1 is the data evaluated by the anomaly 
detection model consisting of the learning data Xanomaly-model1.

The first of the two thresholds used in our model is a user-
defined Thresholdanomaly-model1 with normal learning data not 
exceeding the anomaly score.

3.4.2  Anomaly detection model for product type changes
Eq. (6) represents the learning data for the anomaly detection 
model for product type change detection:

 X X Xanomaly model defect factors type factors   2  (6)

Thus, Xanomaly-model2 is the Cartesian product of a non-product 
defect factor set and a product type-affected set.

Then, similarly to Eq. (5), Eq. (7) shows the calculation 
method for our modelʼs anomaly score, sanomaly-model2:
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xanomaly-model2 is the data evaluated by the anomaly detection 
model consisting of the learning data Xanomaly-model2.

The second of the two thresholds used in our model is a user-
defined Thresholdanomaly-model2 with normal learning data not 
exceeding the anomaly score.

3.5	 Anomaly score calculation
This subsection explains the calculation and threshold of the 
anomaly score that integrates Anomaly Model 1 for molding 
defect sign detection with Anomaly Model 2 for type change 
detection.

Eq. (8) represents the anomaly score that integrates the 
multiple anomaly detection models proposed in our method:
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As shown in Subsection 3.2, the Isolation Forest anomaly 
score is obtained as the normalization of the expected depth 
value for the data evaluated. Hence, when evaluated by the two 
anomaly detection models, the same data xunion can be 
represented as the square root of the multiplication of the 
anomaly score from the law of exponents.

The integrated anomaly score sunion takes the same range of 
(0,1] as the Isolation Forest anomaly score. Therefore, 
Thresholdanomaly-model1, explained in Sub-subsection 3.3.1, is used 
as the threshold for molding defect sign detection, while 
Thresholdanomaly-model2 is used as the threshold for type change 
detection.

4.	 Verification
This section presents the results of verifying the effectiveness of 
our proposed method using the data collected from the injection 

Fig. 7  Conceptual configuration of the anomaly detection models
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molding machine shown in Subsection 2.1. The conventional 
method compared was an anomaly detection method using a 
conventional method similar to the AI-equipped machine 
automation controller mentioned in Subsection 2.2.

4.1	 Details of the verification
Table 1 summarizes the data we verified:

Table 1  Summary of the verification data

Product type Shot count Number of collected 
variables

Number of shots to be 
determined as detected 

anomalies

A 113 70 4

B 223 70 70

The products manufactured fell into two types. After 113 
shots worth of Type A were manufactured, a transition occurred 
to the manufacturing of Type B. The verification presented 
herein aimed to detect the changeover to Type B after 
determining that four shots were detected as defect signs for 
Type A.

Because of confidentiality, this paper does not present 
specific details of the explanatory variables.

4.2	 Anomaly detection models
Table 2 shows the details of the anomaly detection models 
generated by our proposed method.

Table 2  Summary of the anomaly detection models

Anomaly detection 
model

Anomaly detection model’s explanatory 
variables Sample size

Anomaly Model 1 var1, var2, var3, var4 40

Anomaly Model 2 var11, var12, var13, var14 40

The anomaly detection models generated were the two types 
presented in Subsection 3.4, Anomaly Models 1 and 2. The 
sample size for the model generation here was 40 shots worth 
of Product Type A. Four explanatory variables were selected for 
each anomaly model according to Subsection 3.3. Fig. 8 shows 
the histograms for the respective explanatory variables.

The variables representing Anomaly Model 1, i.e., var1, var2, 
var3, and var4, showed variations in distribution, especially for 
Product Type A containing defects. Anomaly detection 
operations using these variables were performed for product 
defect sign detection. On the other hand, the variables 
representing Anomaly Model 2, i.e., var11, var12, var13, and 
var14, showed no product type-specific variations in 
distribution. These observations reveal that anomaly detection 
using these variables is suitable for product type determination.

4.3	 Verification results
Per Sub-subsections 3.4.1 and 3.4.2, we set two values not 
exceeding the normal anomaly scores as Thresholds 1 and 2 for 
the anomaly detection models, Anomaly Models 1 and 2, 
respectively, based on the anomaly scores for the learned 
results. Table 3 shows the thresholds for Anomaly Models 1 and 
2, respectively:

Fig. 8  Histograms for the explanatory variables representing the anomaly detection models
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Table 3  Thresholds for the anomaly detection models

Anomaly 
detection model

Threshold’s 
name

Threshold’s 
purpose Threshold

Anomaly Model 1 Threshold 1 Defect sign detection 0.550

Anomaly Model 2 Threshold 2 Product type change detection 0.570

Fig. 9 shows the results of anomaly score evaluation by our 
proposed method:

These graphs are arranged from top to bottom for Anomaly 
Model 1ʼs anomaly score, sanomaly-model1, Anomaly Model 2ʼs 
anomaly score, sanomaly-model2, and the integrated anomaly 
detection modelʼs anomaly score sunion.

In the first graph, sanomaly-model1 shows the results for the 
conventional method, in other words, the anomaly detection 
model built of variables representing product defect factors. It 
reveals that while the four defective shots in the first half were 
correctly determined as such, the post-type change shots were 
all determined defective with the anomaly score threshold 
constantly exceeded.

In the second graph, sanomaly-model2 shows that the post-type 
change shots were all successfully detected, although product 
defect determination failed.

In the third graph, sunion shows the results of our proposed 
method. The product defect signs and the post-type change shots 

were all successfully detected. Moreover, the product defect-vs.-
type change differentiation by Thresholds 1 and 2 was 
successful with the single exception of the 37th shot.

Table 4 summarizes the evaluation results for our 
verification:

Table 4  Evaluation results

Product 
type

Shot 
count

Number of 
collected variables

Number of shots to be 
determined as detected 

anomalies
Accuracy

A 113 70 4 (defect sign) 99.1%

B 223 70 223 (product type) 100%

The evaluation data for Product Type A showed an accuracy 
of 99.1% due to the unsuccessful product defect-vs.-type 
change differentiation for the 37th shot data. The evaluation 
data for Product Type B shows that the post-type change shots 
were all correctly detected.

4.4	 Discussion
The verification data showed an accuracy of 99.1% and 100% 
in the graphʼs Product Type A and B sections, respectively. The 
anomaly score shown by our proposed method was observed to 
behave almost as intended, albeit with one shot incorrectly 
detected.

Fig. 9  Results of anomaly score evaluation for each anomaly detection model
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The 37th shot showed an anomaly score exceeding 
Threshold 2 and was incorrectly detected as a post-type change 
shot instead of a pre-type change shot. The cause was probably 
that the anomaly score variation range differed between the 
graphʼs first and second halves. A check with sanomaly-model2 
reveals that the anomaly score varied from 0.45 to 0.55 in the 
first half/Type A section but remained almost constant in the 
second half/Type B section. The integration of the sanomaly-model1 
and sanomaly-model2, i.e., sunion, was also probably affected by the 
anomaly score variations in the first half/Type A section, 
causing the anomaly score for defect sign detection to increase 
and exceed Threshold 2.

Solving these problems requires adjusting each anomaly 
score variation range before synthesizing anomaly scores and 
remains a challenge to consider.

Despite some aspects to be improved, our unified real-time 
anomaly detection model can support both product defect sign 
detection and type change detection and, as such, can meet the 
requirements presented in Subsection 2.3. As a result, it can 
achieve the objective of a reduced defect rate mentioned in 
Subsection 2.2.

Our anomaly detection model allows integrated evaluations 
by multiplying multiple anomaly scores. Hence, it is 
operationally easy to manage. Its ability to perform new 
evaluations only using past scores enables easy integration of 
many anomaly detection models, enhancing its potential for 
deployment in future applications.

5.	 Conclusions
This paper presented and discussed the following three 
requirements for addressing the challenge of detecting 4M 
change-induced concept drifts: real-timeliness, skill-free 
operation involving no parameter adjustment, and compatibility 
between product defect sign detection and type change 
detection. With causality in mind, we proposed a solution that 
identifies a group of variables representing product defect 
factors and a group of 4M-change variables affecting them. 
Additionally, our proposed solution integrates multiple anomaly 
detection models generated from each group of variables.

We experimentally verified that the unified anomaly detection 
model correctly differentiated and detected product defects and 
type changes as intended except for one shot. We limited our 
method to evaluating one specific case this time. However, we 
expect this method to reduce defect rates at many 
manufacturing sites as it improves and builds on successful 
cases.

Manufacturing sites often face challenges in operating 
machine learning. Our proposed method could effectively 

encourage the broader use of machine learning. It needs nothing 
but anomaly scores for computations. Hence, it appears 
promising for further applications, such as new evaluations 
using past anomaly scores or integrations of many anomaly 
detection models.

Moving forward, we will refine and apply our method to 
actual manufacturing sites to perform detailed evaluations. We 
aim to enhance our methodʼs versatility through large-scale data 
evaluations and combine three or more anomaly detection 
models to deploy our method as a solution that efficiently 
manages many anomaly detection models.

References
1) Omron Corporation. “AI-Equipped Machine Automation 

Controller.” (in Japanese), https://www.fa.omron.co.jp/product/
special/sysmac/featured-products/ai-controller.html (Accessed: Mar. 
14, 2024).

2) Y. Okawa and K. Kobayashi, “A Survey on Concept Drift Adaptation 
Technologies for Unlabeled Data in Operation,” (in Japanese), in 
The 35th Annu. Conf. Japanese Soc. Artif. Intell., 2021. 2021, 
2G4GS2f03.

3) A. Sugiyama and Y. Miyata, in Practical Guide to Injection Molding 
- Fundamentals and Mechanisms, Shuwa System, 2014, p. 15.

4) T. Sugihara, “Improved Anomaly Detection in Data Affected by 
Sudden Changes in the Factory,” (in Japanese), OMRON 
TECHNICS, vol. 56, no. 1, pp. 48-57, 2024.

5) K. Tsuruta, et al., “Development of AI Technology for Machine 
Automation Controller (1) –Anomaly Detection Method for 
Manufacturing Equipment by Utilizing Machine Data,” (in 
Japanese), OMRON TECHNICS, vol. 50, no. 1, pp. 6-11, 2018.

6) F. T. Liu et al., “Isolation-based anomaly detection,” ACM Trans. 
Knowl. Discovery Data (TKDD), vol. 6, no. 1, p. 3, 2012.

7) Y. Abe, et al., “Development of AI Technology for Machine 
Automation Controller (2) –The Insight Gained Through 
Implementation of Anomaly Detection AIs to the Machine 
Controller,” (in Japanese), OMRON TECHNICS, vol. 50, no. 1, pp. 
12-17, 2018.

About the Authors

KAWANOUE Shinsuke
Technology Dept. 1
Technology Development Division HQ.
Industrial Automation Company
Speciality: Software Engineering
Affiliated Academic Society: IEICE

The names of products in the text may be trademarks of each company.

KAWANOUE Shinsuke� Proposal of Concept Drift Detection in Factory Automation (FA) Domain

8


