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In various fields, including medical and health management, the demand for vital sensing technology is increasing 
because of the proliferation of related services. One of them, millimeter-wave radar, is seen as a promising 
technology that can simultaneously measure the vital signs of multiple people in a noncontact manner with the 
body. The detection of multiple targets in millimeter-wave radar is generally performed by clustering based on the 
intensity information of spatially separated reflected waves, which is generated as input from point clouds. By 
analyzing the reflected waves of each subject identified as a result, vital signs, such as respiration rate and heart 
rate, can be determined. However, millimeter-wave radar tends to be at a disadvantage in terms of angular 
resolution compared to optical sensors because of the constraint of the number of antennas, and there are cases 
where detection becomes difficult when the distance between the subjects to be measured is close.

In this paper, we propose a time-series clustering method to detect the respiration rate of multiple people based 
on the trend information generated by creating a respiration rate time trend map that captures the time variation of 
the respiration rate observed in space from the spatial reflection distribution of millimeter-wave radar. We 
conducted an experiment to simultaneously measure the respiration rate of multiple people and confirmed that we 
can detect the respiration rate even in situations where the distance between subjects is close or the respiration 
rate matches instantaneously, achieving a significant performance improvement of 93% compared to the detection 
rate of 51% of existing methods.

1.	 Introduction
With the recent development of information and communication 
technology, vital sensing technology has become advanced and 
diversified, undergoing application in a variety of different 
fields, including medicine and healthcare. Sensing methods 
divide broadly into contact and noncontact types. Contact-type 
methods obtain vital signs through a sensor worn in direct 
contact with the human body. Research and development are 
underway on sensors for measuring the various vital signs of 
heart rate, blood pressure, blood oxygen level, and body 
temperature. Following the advent of smaller, more power-
efficient devices as alternatives to restrictive contact sensors 
with fixed-installation-type enclosures and cables that restrict 
free body movement, wearable sensor devices have become the 
driving force for the widening use of methods that enable long-
time, non-restrictive measurement1-3). Wearable sensors are 
intended for on-body use. Their use for long-time measurement 

causes discomfort to the user and, in some cases, may cause 
problems in the aspects of safety and comfort, such as skin 
inflammation around the attachment site.

Noncontact vital sensing methods include those using 
cameras, radar, microphones, and the like. These methods 
require no on-body sensors and allow vital sign measurement 
without stress or discomfort from on-body devices3-6). Assuming 
a sleeping situation at home, more than one subject may be 
present within the measurement range, giving rise to the need 
for multi-person measurement. Using sensors able to obtain 
spatial information of the range and azimuth of cameras or radar 
devices will enable the simultaneous acquisition of the vital 
signs of multiple subjects within the measurement range.

Such sensors are available in more than one method and have 
practical challenges. For example, camera-based methods cause 
concerns about the privacy leakage risk of sensitive 
information, such as personally identifiable facial images, from 
subjectsʼ photographed data7). Microphone array-based methods 
can only be applied to limited situations because of the 
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influences of disturbances, such as noise pollution.
By contrast, radar-based methods attract attention as high-

precision vital information acquisition technology free from 
such privacy concerns. Millimeter-wave radar uses radio waves 
with a wavelength of several millimeters, which penetrate 
clothes or comforters to detect the movements of human body 
surfaces, thereby enabling the measurement of vital signs, such 
as respiratory and heart rates8-10).

Respiratory waveforms representing respiration-induced body 
surface microdisplacements or respiration-related information 
calculated therefrom, such as respiratory rates, serve as effective 
means for estimating sleep quality and health conditions.

Using a millimeter-wave radar system equipped with multiple 
antenna elements, we can estimate the reflected waveʼs 
incoming direction to obtain the azimuth and range of the 
measurement target. Radar azimuth resolution tends to improve 
proportionally to the number of antennas. Typically, azimuth 
resolution falls within several to several tens of degrees. A 
radar-based sensor has more reasonable feasibility but lower 
azimuth resolution than a light detection and ranging (LiDAR) 
sensor, a type of range sensor for optical systems11-13). 
Therefore, multiple personsʼ respiratory waveforms or 
respiratory rates are hard to detect based on spatial information 
where subjects are too closely spaced or distant. Currently 
commercially available radar-based sensors are intended to take 
measurements from a single subject positioned at the shortest 
distance and do not support multi-person measurement.

In this paper, we assume a scene of family members sleeping 
together at home and propose a multi-person respiratory rate 
detection method based on the respiratory rate trend information 
generated to capture the variation over time in the respiratory 
rate from measurement signals of millimeter-wave radar. 
Section 2 describes the principle of respiratory rate 
measurement using radar. Section 3 discusses the challenge in 
multi-person measurement using respiratory rate data extracted 
from radar signals. Section 4 presents and discusses our 
proposed method. Section 5 presents the results of obtaining 
respiratory rate time trend information, using our proposed 
method, from the radar signals for simultaneous multi-person 
measurement using millimeter-wave radar.

2.	 Principle of respiratory rate measurement 
using millimeter-wave radar

2.1	 Range/azimuth measurement
Body-surface reflected radio waves can occur simultaneously on 
the surfaces of various human body parts. Hence, multiple 
reflection signals are simultaneously received from one subject. 
Moreover, where there are multiple subjects, reflection signals 

are simultaneously received from multiple body parts of their 
bodies. Multiple reflected waves simultaneously received in this 
way must be spatially separated.

The radar range resolution dres is dependent on the 
transmission signal bandwidth and expressed as follows:

 d c
Bres  2

 (1)

where c is the speed of light and B is the bandwidth.
Millimeter-wave radar achieves high-range resolution by 

broadband signal transmission/reception using the frequency-
modulated continuous wave (FMCW) radar or pulse method. 
Besides, incoming direction estimation using an array antenna 
allows the estimation of the azimuth of the incoming reflected 
wave. When a reflected wave arrives from a direction θ to an 
antenna away at a distance d, the signal phase difference 
between antennas is given as d sinθ, whereby the incoming 
direction can be estimated using the formula below:
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where λ denotes the wavelength of the radio wave.
In array antenna-equipped radar, the temporally subsequent 

antenna reception signal shows a phase shift of      2 / sind
     2 / sind  with respect to the temporally preceding antenna 

signal. Each antennaʼs phase exhibits a linear progression 
relative to the antenna position. Therefore, the incoming 
direction θ can be estimated from the phase variation of each 
antenna13).

Methods widely used to process such range/azimuth 
measurements are those based on the fast Fourier transform 
(FFT).

The calculation results are complex signal data with range 
and azimuth bins. Their visualized form as a map is called a 
radar image.

2.2	 Extraction of vital information
Fig. 1(a) shows a typical example of the amplitude data from a 
radar image of three subjects under simultaneous measurement. 
The three subjects were arranged side-by-side in the azimuth 
direction near the 20th range bin. The amplitude information in 
a range radar image corresponds to the reception intensity of the 
received reflected wave, thereby enabling the determination of 
its reflection intensity, which depends on the presence/absence 
and shape/material of the reflector at the corresponding range/
azimuth. However, caution should be taken against interference 
effects that may occur when highly reflective targets exist in the 
surroundings or when multiple targets exist nearby.

Figs. 1(b) and (c) show the time-series change in the phase 
component of a reflected wave from a human body surface and 
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an unwanted reflected wave (clutter), respectively. Phase 
information contains the information on the distance to the 
target. No variation over time occurs with static clutter 
components, such as stationary objects or antenna leakage. By 
contrast, when the reflector is a human body, its motion causes a 
corresponding change in phase over time. Breathing- or 
heartbeat-induced body surface oscillations are particularly 
cyclic, and their corresponding complex signal components are 
known to draw an arc-shaped locus on the complex plane13). 
This aspect can be used for waveform component extraction.

As explained above, the amplitude information in a radar 
image serves to determine the presence/absence and locations of 
reflectors whereby a phase waveform, the body surface 
movement information associated with the subjectʼs body 
motion, is extracted from the time-series change in phase 
information, enabling the estimation of vital signs, such as 
respiratory and heart rates from the phase waveform.

Fig. 1  Typical radar image and phase variation over time

2.3	 Signal processing flow
Fig. 2 shows the process flow of multi-person respiratory rate 
measurement using radar. The first step is radar signal 
transmission and reception. For the baseband signal with the 
received wave multiplied by the transmission signal reference 
wave, range/azimuth estimation is performed to produce a radar 
image. This radar signal transmission and reception and the 
range/azimuth estimation process are cyclically performed to 
obtain the radar imageʼs time-series data equivalent to the 
analysis intervals for which the respiratory rate is to be 
calculated. Next, for the time-series data of each bin obtained, 
static clutter estimation and removal are performed to obtain the 
phase waveform information. Then, whether a respiratory 
component is contained in the waveforms obtained is 
determined to extract a respiratory waveform group. The 
respiratory waveform group obtained is based on the reflected 
signals from different body parts and is hence observable over 
multiple bins. Moreover, where there are multiple subjects, their 
respiratory waveforms are mixed. Each subjectʼs respiratory 
waveform must be extracted from the respiratory waveform 

group to measure their respirations. Probable methods divide 
into one that classifies or separates waveforms proper based on 
their correlation or independence9) and one that converts the 
waveform groups into one- or multidimensional feature 
quantities for subsequent classification10). The method that uses 
waveforms proper has the drawback of increased computational 
complexity. Meanwhile, the feature quantity-based method is 
challenged by the inability to perform correct classification 
without using appropriate feature quantities as explained below. 
Our study herein adopted the feature quantity-based method.

The respiratory rate is calculated from each waveform to 
obtain a map linked with the respiratory rates calculated for bins 
containing extracted respiratory waveforms (hereinafter called a 
respiratory rate extraction map). Then, the coordinates or 
respiratory rate information in the respiratory rate extraction 
map obtained is used as the input to clustering to classify each 
bin by the corresponding subject. Each subjectʼs respiratory rate 
and coordinates information is estimated from the map 
information of each classified cluster.

Fig. 2  Flow of respiratory rate extraction

3.	 Challenges in multi-person respiratory rate 
measurement

3.1	 Challenge in cases with the use of spatial information
Fig. 3 shows typical results of clustering performed using the 
point group data with azimuth/range information as the input. 
Note that the classification results are represented as color-
coded bins.

Fig. 3(a) shows the results for a situation with two subjects 
positioned near the 20th range bin. Point groups are extracted 
for the coordinates corresponding to each subjectʼs position. The 
point groups are sufficiently separated on the coordinates to be 
correctly classified into the clusters corresponding to the two 
subjects.

Fig. 3(b) shows typical results for a situation with three 
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subjects present near the 20th range bin. As for two subjects, 
point groups are extracted for the coordinates corresponding to 
each subjectʼs position. However, the point groups are 
determined as two clusters.

In this case, the point groups extracted for the three subjects 
are hard to classify because of the proximity between the spatial 
coordinates. As a result, only one cluster is obtained near the 
20th range bin despite the presence of three subjects. Point 
groups are also extracted around the distant 115th range bin and 
determined as another cluster. This cluster is a false echo caused 
by the multipath effect via the stationary objects in the 
surroundings.

Where spatial coordinate information is utilized, as explained 
above, point groups are combined and incorrectly classified 
because of the insufficient spacing between subjects in radar 
image. Moreover, the false echo caused by the multipath effect 
is determined as another cluster. As a result, problems arise, 
such as extracting no subjectsʼ vital signs supposed to be 
extracted or more vital signs than the number of subjects 
involved.

Fig. 3  Typical results of clustering using spatial information

3.2	 Challenge in cases with the use of respiratory rate 
information

One of the possible solutions to the challenge in cases with 
spatial coordinate information used as the input is classification 
based on alternative input information. This subsection presents 
typical results of clustering with respiratory rate data used as the 
input and the challenge that remained.

Let us first show a case where clustering with respiratory rate 
data used as the input solved the challenge in clustering using 
spatial coordinate information. Fig. 4 shows the distribution of 
respiratory rates per minute calculated from the waveforms in 
each bin containing the extracted respiratory waveforms of the 

three subjects (Fig. 4(a)) and the results of clustering with 
respiratory rate data used as the input (Fig. 4 (b)). The 
clustering input data used here are the one-dimensional data 
converted from the respiratory rates in each bin on the 
extraction map. As shown in Fig. 4(a), the map consists of three 
separate respiratory rate bar charts. Fig. 4(b) reveals that point 
groups corresponding to the subjectsʼ positions are classified 
into three clusters. In addition, the distant false echo 
components are shown classified into the same clusters near 
those near the real echoes rather than different clusters. In other 
words, clustering with respiratory rate data used as the input led 
to successfully classifying the data in the space into the same 
number of clusters as that of respiratory rate clusters.

Fig. 4  Successful case of clustering with respiratory rate data used as the input

Fig. 5 shows additional typical results for the three subjects. 
As shown in Fig. 5(a), their respiratory rate bar charts nearly 
overlap, unlike in the successful case. Data were obtained under 
a condition with the subjects positioned almost the same as in 
the case in Fig. 4. As the result of performing clustering on 
these data, point groups corresponding to the subjectsʼ positions 
are determined as a single cluster despite the presence of three 
persons, as shown in Fig. 5(b).

In cases with the respiratory rate data used as the input as 
above, classification can be performed unaffected by subjectsʼ 
relative positions or false echoes. On the other hand, similar 
respiratory rates are difficult to classify, posing another 
challenge.

Fig. 5  Failed case of clustering with respiratory rate data used as the input
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4.	 Clustering method using trend information
4.1	 Variation over time in the respiratory rate during 

natural breathing
To consider a method to solve the challenges presented in 
Section 3, we examined whether temporal trends exist in human 
respiratory rates. Fig. 6 shows the time trends of natural 
breathing at the respiratory rate measured using belt-type 
sensors (hereinafter “respiration belts”) for three subjects. For 
the respiratory rate, a single analysis interval (hereinafter a 
“slot”) is defined as 20 seconds. Waveforms measured using 
respiration belts were analytically calculated. The x-axis 
indicates the index number of slots for which respiratory rate 
calculations were made.

Each subjectʼs respiratory rate varies slot by slot, revealing 
that their time trends differ.

Therefore, even if some slots show respiratory rate overlaps 
between subjects, a look at the time-series changes will allow 
the separation of the respiratory rate of each subject from the 
othersʼ rates.

Fig. 6  Results of respiratory rate measurement using respiration belts

4.2	 Clustering using time-series information
As the separation method based on respiratory rate trend 
information shown in Subsection 4.1, we devised a time-series 
clustering method that uses a respiratory rate extraction map 
corresponding to multiple analysis slots to generate time-series 
data and classify the respiratory rate of each slot.

Fig. 7 shows the flow of our devised clustering method using 
time-series information. This flow starts with the cyclic process 
of analyzing respiratory waveform analysis interval data and 
producing a respiratory rate extraction map to accumulate 
respiratory rate extraction maps calculated for each time slot. 
The next step is to convert the accumulated data to produce a 
time trend map that contains each binʼs respiratory rate, time 
slot, and bin-index information.

The third step is to select and extract only bins containing 
respiratory rates extracted from more than a certain number of 
time slots on the time trend map. The purpose is to select the 

bins containing a specific subjectʼs trend information. The cause 
of unselected bins may be that the reflected wave containing 
information on the subjectʼs respiration-induced body motion 
was not observed or that it was not stably observed because of 
such factors as the proximity to the boundaries between the 
subjects.

Fig. 7  Flow of respiratory rate measurement using time-series clustering

The fourth step is to perform time-series clustering with the 
selected time trend information used as two-dimensional input 
data. The final step is to determine each clusterʼs respiratory 
rate per slot based on the results of the clustering to produce the 
respiratory rate trend output for each subject.

5.	 Evaluation
5.1	 Experimental environment
We performed a respiratory rate measurement experiment on 
multiple subjects to evaluate the performance of respiratory rate 
measurement using our proposed method. For data acquisition, 
we used an FMCW millimeter-wave radar system with a center 
frequency of 62 GHz and a frequency bandwidth of 3.3 GHz. 
The antenna used has two transmission and three reception 
elements, thereby forming a half-wavelength, six-element, 
equally spaced linear array antenna in a multiple-input multiple-
output (MIMO) configuration. The sampling cycle per radar 
image to be obtained was set to 80 milliseconds. The slot time 
duration for respiratory rate calculation was set to 20 seconds 
(number of sampling points = 250 points).

Fig. 8 shows the relative arrangement of the radar system and 
subjects in the experiment. Assuming a scene of a family 
sleeping together at home, we let three subjects (A, B, and C) 
lie face-up, side by side, shoulder to shoulder, spaced 0.45 
meters apart. The radar system was installed on the head side of 
these subjects, right in front of the subject in the middle with a 
horizontal distance of 0.5 meters from the subjectʼs chest and a 
vertical distance of 0.3 meters from the subjectʼs back. A 
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respiration belt was worn around the trunk of each subject to 
ensure that the reference waveform would be obtained 
simultaneously with measurement with radar.

Fig. 8  Schematic of the experiment environment

The respiration belts were set to a sampling cycle of 10 
milliseconds to perform measurements in sync with the radar 
and calculate the respiratory rate in a common time slot for 
comparison with the radarʼs value. Using the above 
experimental arrangement, we measured the respiratory rate of 
each subject for 600 seconds, equivalent to 30 time slots. We 
compared the respiration belt method and our proposed method 
regarding the measured results for respiratory rate time trends.

5.2	 Time trend map
Fig. 9(a) shows a time trend map generated from accumulated 
respiratory rate maps. Fig. 9(b) shows the time trend map 
consisting only of bins containing respiratory waveforms 
extracted from over 20 slots. The y-axis indicates the time slot 
index number while the x-axis denotes the bin index number. 
The bin index number is obtained by converting azimuth and 
range coordinates into one dimension and sorting them in 
ascending order. The colors on the heat map below represent 
calculated respiratory rates. A bin with no extracted respiratory 
waveforms contains “0,” and the heat map represents many bins 
as such. With each subject present at a specific location, 
respiratory waveforms were extracted in specific bins. In these 
bins, respiratory waveforms were extracted over many time 
slots.

Bins containing respiratory waveforms extracted from over 
20 slots accounted for 6.5 percent of the total. A look at 
extracted bins-only time trends reveals that bin index numbers 
around 100, for example, exhibit a different color gradation than 
those around 300, indicating that several different changes exist 
in the time slot direction. These changes can be interpreted as 
representing the difference in trend between the subjects.

Fig. 9  Extracted respiratory rate’s time trend map

Fig. 10 shows the comparison results between the respiratory 
rate per slot of all extracted bins and those calculated from the 
respiration belt waveforms. The figure seemingly shows small 
numbers of bins because of the overlaps between results with 
similar values. The results for most bins show similar values to 
the respiration belt-measured results for one of the subjects. The 
results of the same bin are connected with a line, and the slot-
to-slot change within the same bin also follows the patterns 
exhibited by the corresponding respiration belt-measured results 
for one of the subjects, indicating that each binʼs results contain 
the time trend information on a specific subject.

Fig. 10	 Respiratory rates in extracted bins vs. those measured by respiration belts
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5.3	 Respiratory rate measurement results
Fig. 11 compares the results of the respiratory rate trend 
estimation by slot-by-slot clustering with the respiration belt-
measured results. Meanwhile, Fig. 12 compares the results of 
the respiratory rate per cluster trend estimation by time-series 
clustering, our proposed method with the respiration belt-
measured results. For the slot-by-slot clustering method, we set 
the respiratory rate per bin as the input. The correspondence 
between the radar- and respiration belt-measured results was 
determined based on the relative position of each estimated 
cluster.

The slot-by-slot clustering method only estimated the 
respiratory rates of two subjects for many slots; it estimated the 
respiratory rates of three subjects for only six slots out of 30. 
By contrast, our proposed method achieved successful 

estimation for 21 slots out of 30, showing a significant 
improvement in multi-person respiratory rate estimation 
performance.

The results for our proposed method reveal that as far as 
Subjects A and B were concerned, our proposed method 
achieved successful respiratory rate measurement for any of the 
slots for which the respiration belts allowed successful 
respiratory rate estimation. In the case of Subject B, the 
respiration belt failed to produce the respiratory rate output for 
many slots. The cause was that the subjectʼs respiratory 
waveform was found too irregular to be useful for respiratory 
rate determination. The same was the case with the radar-
measured results: no respiratory rate output was produced 
because none of the waveforms available were found useful for 
respiratory rate calculation.

Fig. 11  Results of respiratory rate estimation by slot-by-slot clustering

Fig. 12  Results of respiratory rate estimation by time-series clustering
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In the case of Subject C, our proposed method failed to 
produce the respiratory rate output for some slots, for which the 
respiration belt produced the respiratory rate output. The 
probable cause was that for the slots concerned, no respiratory 
waveform corresponding to Subject C was extracted from the 
radar signal. Failure to extract the target subjectsʼ respiratory 
waveforms from the corresponding radar signals occurred 
probably because of such factors as the reduced intensity of the 
reflection signal from each target subject as a result of visually 
indeterminable degrees of changes in the relative position 
between the radar sensor and the target subject or that between 
the target subjects or a reduced signal-noise ratio (S/N ratio) due 
to phasing effects.

Table 1 shows the number of extraction slots per subject and 
the detection rate for each method. The detection rate is defined 
as the ratio of the number of slots with the respiratory rate 
successfully measured by the respiration belt to that with the 
waveform successfully extracted using radar. The lowest 
detection rate by the slot-by-slot clustering method was 51% 
(Subject A). By contrast, the lowest detection rate by our 
proposed method was 93% (Subject C), indicating a significant 
improvement.

Table 1	 Number of extraction slots per subject and the detection rate in each 
method

Algorithm Item Subject A Subject B Subject C

Slot-by-slot
# of slots 15 21 24

Detection rate 51% 91% 80%

Time-series
# of slots 29 23 28

Detection rate 100% 100% 93%

6.	 Conclusions
When radar is used to take measurements from multiple targets 
in space, the challenge is to separate the signal for each target 
because of a lower azimuth resolution than achievable with an 
alternative method such as a camera. This paper proposed a 
time-series clustering method intended for multi-person 
respiratory rate measurement by millimeter-wave radar; this 
method uses the respiratory rate time trend map generated based 
on the measurement signal as the input. We performed a 
verification experiment on three subjects, confirming a 
significant improvement in the detection rate compared with a 
conventional method.

The study results presented above only cover a single case of 
verification under limited conditions and should be further 
examined with greater numbers of subjects and conditions. Our 
study herein, in particular, assumed that the subjects were at 
rest. However, during sleep at home, more complicated 
situations would occur, such as sleeping position changes and 

other body motions or indoor movements of family members 
and others. Our proposed method should also be verified for 
adaptability to such practically possible situations.

We expect our proposed method to extend its applicability 
beyond multi-person respiratory rate measurement to multi-
person vital sign measurement and eventually to signal 
separation between multiple measurement targets other than 
people. Moving forward, we will consider radar-based vital sign 
measurement and other app deployments based on the 
abovementioned challenge.
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