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Solving labor shortages and improving product quality are major issues at manufacturing sites, and artificial 
intelligence (AI) is being applied as a means of improvement. However, there are cases where it is difficult to 
apply conventional AI. One such case is the discrepancy between the distribution of data assumed by AI 
algorithms and the data at the actual manufacturing site. At the manufacturing site, there are fluctuations in many 
factors, such as changes in raw materials, replacement of jigs, and changes in equipment settings, and the data are 
affected by them. If there are such fluctuations, then any sudden fluctuations would also appear in the data.

Conventional AI assumes that there will be no sudden fluctuations. Therefore, when conventional AI is applied 
to cases where the influence of any fluctuations is large, it results in erroneous judgments. This improvement is 
one of the challenges in utilizing AI.

In this paper, we propose a new algorithm that adds the control chart method that has been conventionally used 
in the field of quality control to the conventional algorithm. And for on-site issues that were difficult to deal with 
using conventional algorithms, the false positive rate of the proposed method was 18%, while the two 
conventional methods were both about 70%. This algorithm can improve the false positive rate by about 50% and 
has been confirmed to be effective. In this paper, as an AI that can respond to fluctuations in data, we show the 
direction by an algorithm that combines the detection of fluctuations by the control chart method and sequential 
learning.

1. Introduction
The most common purpose of introducing AI is probably to 
reduce or replace human tasks. For instance, OMRON explains 
the effects of introducing AI, using such phrases as “... making 
active use of AI to reproduce the skills of skilled inspectors” or 
“... new man-machine cooperation for making a revolutionary 
difference to workforce productivity and quality on the shop 
floor of food products manufacturing.”1)

AI solutions come in various forms or with various 
algorithms. Particularly widely used are the so-called machine 
learning algorithms2). Machine learning involves the tasks of 
preparing data and making the machine learn them. A learned 
machine can make predictions or determinations and perform 
other operations. This functionality enables machines to replace 
human acts of making predictions or determinations. For 
example, in the case of a manufacturing site, such as mentioned 
above, a machine learning model is built using learning data 
collected from the machinery and various sensors and then is 

applied to detect anomalies on the manufacturing site.
Batch and sequential learning have been conventionally 

known as machine learning application flows3). Batch learning is 
a method of learning by preparing a certain amount of data as 
learning data and batch-processing them. After the learning 
phase, the AI-based prediction or determination phase follows. 
In batch learning, learning data collection periods mean AI 
downtimes. An OMRON product, an AI-equipped machine 
automation controller, is also of this type4).

Sequential learning is a method in which learning is repeated 
each time the sample size increases. In sequential learning, no 
batch learning is performed using new learning data in addition 
to past learning data every time the sample size increases. 
Instead, the cycle repeats itself of correcting past learning 
results with new samples. This cyclic process saves the need to 
handle large amounts of sample data simultaneously, reducing 
the computational complexity. Moreover, the learning and AI 
use periods proceed simultaneously, eliminating the need for 
time to accumulate learning data.

In batch learning, the learning and prediction phases are thus 
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separated, making it impossible to track fluctuations in data 
distribution. In sequential learning, while fluctuations in data 
can be tracked, learning is easily affected by temporary 
fluctuations. Besides, changes in distribution are tracked slowly 
due to the effect of past data.

As detailed in the next section, such fluctuations may occur 
even with all imaginable conditions fixed, posing one of the 
challenges in applying machine learning to manufacturing sites. 
To solve this challenge, this paper proposes a new algorithm 
that combines fluctuation detection by the control chart 
approach with sequential learning. Section 2 presents the 
challenges to be solved in this paper, while Section 3 presents a 
proposed method. Section 4 shows the results of an experiment 
using specific equipment. Section 5 discusses the proposed 
method based on the experiment results.

2. Challenges
When data are continuously collected, trends may significantly 
change at different times. At a manufacturing site, this 
phenomenon can occur because of many factors, such as 
material changes in raw materials, replacement of jigs, and 
changes in equipment settings.

This paper explains this challenge using the cutter position 
data at the moment of cutting in a horizontal pillow packaging 
machine. A horizontal pillow packaging machine wraps to-be-
packaged items with rolled film and heat-seals them into 
packaged products. Finally, individual packages are completed 

as cut off from the film. This cutting is performed using a 
cutter: in the experimental setup, a displacement sensor is fitted 
on each end of the cutter to measure the cutter height at the 
time of cutting performed by the cutter during its vertical 
motion. With two displacement sensors provided, data are 
collected in pairs at identical times. Fig. 1 shows a schematic 
view of the cutter:

Fig. 1 Schematic view of the packaging machine cutter

Figs. 2 and 3 show the data from the respective sensors. 
These data are those with the packaged dimensions, the 
material, and the to-be-packaged item being the same, excluding 
data from under different conditions midway. The vertical axis 
in the figures indicates the measured value extracted from the 
actual displacement sensor data and processed by multiplication 
with a constant. The cutter height varies during a single cycle 
consisting of a sequence of actions, such as transferring and 
cutting the to-be-packaged item. This height is measured as 
displacement. From such cycles, only the values of the cutter 
height at the moment of cutting are extracted as data for use in 

Fig. 2 Cutter height variations (Sensor 1)

Fig. 3 Cutter height variations (Sensor 2)
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this paper.
The red circles in Figs. 2 and 3 indicate when foreign matter 

was intentionally jammed in. With foreign matter present, 
outliers tended to be more pronounced than with foreign matter 
absent before and after. Sometimes, the Sensor 1 value outlay to 
the positive side, while the Sensor 2 value outlay to the 
negative side; at other times, the other way around. In the 
experiment, the experimenter selected the foreign matter 
position. Hence, it is a given that the orientation of outliers 
depended on the relative position of the foreign matter to the 
two sensors.

Fig. 4 shows the scatter diagram for the data from Figs. 2 
and 3. Data points representing samples without foreign matter 
are distributed in clusters around two regions. These two 
regions are the areas before and after Cycle 212. Data points 
representing samples with foreign matter are shown distributed 
with features different from those of such clusters.

Fig. 4 Scatter diagram for the data from Sensors 1 and 2

The AI of interest to this paper is intended to determine 
whether a non-defective or defective product results 
immediately after processing. For this purpose, the judgment is 
made based exclusively on the real-time processing data rather 
than by an inspection process placed downstream of the 
processing.

The challenge to be solved specifically by this AI is cases 
with a significant change occurring midway as in Figs. 2 and 3. 
We had to address these cases when developing an AI for 
packaging machines. The data in Figs. 2 and 3 are the records 
of values measured over the lapse of time. In Fig. 2, the 
displacement ranges between －2 and 0 until Cycle 212 but 
ranges between 0 and 1 after Cycle 212, indicating that a 
significant change occurred at that time. Fig. 3 similarly shows 
a significant change at the time of Cycle 212.

Fig. 5 shows the results of using the MT method5), a type of 
batch learning, as the conventional anomaly detection method. 
The samples from Cycle 1 to Cycle 24 were used as learning 
data sources. The vertical axis in Fig. 5 indicates the 
Mahalanobis distance (MD). See 3.2.1 for the explanation of the 
Mahalanobis distance.

This method compared the MD values for samples with and 
without foreign matter until Cycle 212, revealing that samples 
with foreign matter showed a high MD value. Until Cycle 212, 
the MD values around between 1.E＋02 and 1.E＋03 
corresponded to samples with foreign matter. The MD values 
after Cycle 212 lay around between 1.E＋02 and 1.E＋03 
regardless of with or without foreign matter. For example, with 
a rule that samples with 1.E＋01 or more are determined 
defective, many of the samples without foreign matter would be 
determined non-defective until Cycle 212. After Cycle 212, 
however, all the samples without foreign matter would be 
determined defective. Hence, the rule is unusable as a 
determination mechanism.

For this example, we used the MT method as the machine 
learning algorithm. However, the problem herein arose due to 
the flow of batch learning per se. Even with other machine 
learning algorithms, if based on batch learning, similar 
problems will occur.

The first challenge encountered in addressing cases such as 
those in Figs. 2 and 3 is how to automatically detect changes 
occurring after Cycle 212. Another challenge is how to start 
determination quickly based on a new criterion after detection. 

Fig. 5 Results of Mahalanobis distance calculation by the conventional method
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Besides, with single cycles of the packaging machine being on 
the order of 0.1 to 1 second, how to achieve high-speed 
computation with low computational complexity poses yet 
another challenge.

3. Proposed method
This section proposes a method that discards the current 
criterion upon detecting a change posing a challenge and starts 
learning anew. With sequential learning as its basis, this method 
can accommodate the challenge of high-speed computation 
while making it possible to start determination quickly based on 
a new criterion after detecting the change. This way, solutions 
have been achieved to the challenges presented in the preceding 
section.

3.1  Run-based learning flow
The first thing required to solve our challenges is a method of 
automatically identifying the timings of changes. We decided to 
apply an index called a run6) in the control chart approach as this 
method.

A run is an index that regards a situation as an anomaly when 
the value under monitoring occurs on either the positive or 
negative side to the central value of 0 consecutively a certain 
number of times. The JIS6) defines a run as nine consecutive 
occurrences. The probability of a situation where the value 
occurs on the positive side nine consecutive times is given as 
follows:

 0 2 1 2 9. % /≈ ( )  (1)

The idea of run assumes that when a situation with such a 

low probability of occurrence has occurred: something 
anomalous has occurred; hence, something unlikely to occur by 
chance has occurred but not that the event has occurred by 
chance.

Fig. 6 shows a flowchart for determining the occurrence of a 
run. The value sxn in Fig. 6 is obtained for the newly obtained 
data xn from the average value (Ave) and standard deviation (Std) 
of the data prepared before putting the flow into operation. This 
process is called standardization7).

 sx x Ave
Stdn

n=
−  (2)

In this flow, sxn is used as a value necessary to extract 
occurrences of runs. However, sxn tends to have a greater 
absolute value because it deviates more from the average value 
(Ave) and can be used as an index for evaluating the degree of 
deviation from the average value for the sample.

The proposed method regards the occurrence of a run as the 
occurrence of a change. The occurrence of a run is used as the 
method for discarding past data and for starting learning anew. 
Fig. 7 shows the flow of the process that starts learning anew.

The SPC SPC max≥ _  step determines whether a run has 
been established. When a run has been established, n＝1, thus 
ensuring that past learning is discarded to start sequential 
learning anew.

The sx sx maxn < _  step is intended to determine whether the 
obtained sxn is an outlier. For the criterion for determining 
standardized data as outliers, we set a recommended value of 3, 
using the three-sigma rule6) for reference. The average and 
standard deviation values will not be recalculated when any 
datum is determined as an outlier. Thus, the proposed method is 

Fig. 6 Flowchart for run-based learning
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designed to be resistant to the effects of outliers.
The equation for obtaining the average value by sequential 

learning is Eq. (3), which uses the average value Aven−1 of the 
data up to the n－1th datum and the nth sample value xn to 
obtain the average value Aven of the data up to the nth datum. 
Eq. (3) is derived as the sequential learning equation from the 
commonly known average value formula, where Ave0＝0:

 

Ave
n

x

x
n n

x

x
n

n
n n

x

x
n

n
n
Av

n

n

i

n
n

i

n
n

i

n

=

= +

= +
−

⋅
−

= +
−

∑

∑

∑

−

−

1

1

1 1
1

1

1

1

1

1

1

een−1  (3)

Before deriving the equation for obtaining the standard 
deviation by sequential learning, the equation for obtaining the 
covariance by sequential learning is derived. For the variables l 
and m, the covariance of the samples up to the nth one is 
expressed as Covnl m,  (Covl m0 0, = ). When derived from the 
commonly known covariance formula, the sequential learning 
equation is given as Eq. (5). The derivation goes as follows:

First, the commonly known formula for Covnl m,  is Eq. (4):
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is obtained as the sequential learning equation for obtaining the 
covariance.

The variance is for when m＝l in the covariance equation. 
When the variance of the samples up to the nth one is expressed 
as Varn, the equation for calculating Varn by sequential learning 
is given as follows from Eq. (5):

 Var n
n

Var
x Ave

nn n
n n=

−
+

−( )⎛

⎝
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⎞

⎠
⎟−

−1
1

1
2
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where Var0＝0.
A standard deviation is the square root of variance. When the 

standard deviation of the samples up to nth one is expressed as 

Fig. 7 Flowchart including the process at the occurrence of a run
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Stdn, the equation for calculating Stdn by sequential learning is 
given as follows from Eq. (6):

 Std n
n

Std
x Ave

nn n
n n=

−
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where Std0＝0.
When the average value and standard deviation obtained by 

sequential learning are used, the method of sequentially 
standardizing data7) is given as Eq. (8), where sxn is the 
standardized nth sample value:

 sx x Ave
Stdn

n n

n
=

− −

−

1

1
 (8)

3.2  Method for cases with multiple variables
The preceding subsection presented the method for cases with a 
single variable. Fig. 8 shows a flowchart for a version extended 
to support cases with multiple variables.

3.2.1  Mahalanobis distance
In the preceding subsection, an index denoting the degree of 
deviation from the average value is used and with another 
index, sxn, used as a value for enabling a method resistant to the 
effects of outliers. For cases with multiple variables, the 

proposed method uses a Mahalanobis distance as a value with 
the role of sxn.

Mahalanobis distances are, for example, the lengths of 
arrowhead lines in Fig. 9 and represent the distances between 
the reference point and the respective samples. Fig. 9 uses as an 
example a point in a region densely populated with samples 
without foreign matter as the reference point. In actual 
calculations, the average values of the respective variables in 
the sample set used for learning are the reference point 
coordinates.

Fig. 9 Conceptual image of Mahalanobis distances

Fig. 8 Flowchart for cases with multiple variables
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When using the Mahalanobis distance in our approach, the 
average value and standard deviation must first be sequentially 
learned for each variable, similarly to cases with a single 
variable. Besides, the covariance must also be sequentially 
learned. The equation for calculating the covariance by 
sequential learning is Eq. (5) above.

The equation for obtaining the correlation coefficient Corrnl m,  
from the covariance is Eq. (9):

 Corr Cov
Std Stdn

l m n
l m

n
l

n
m

,
,

=  (9)

Considering that it is convenient for manufacturing sites that a 
control value remains unchanged regardless of the change in the 
number of variables, we adopted the definitional equation5) in the 
MT method for quality engineering as the equation for obtaining 
the Mahalanobis distance. The formula for Mahalanobis distance 
(MD) is given as Eq. (10), where sxn is the nth sampleʼs data and 
represents the vector xn as a vector standardized for each 
variable. If not xn but sxn is used, the covariance matrix will be 
replaced with a correlation coefficient matrix8). Hence, the 
correlation coefficient matrix Corrn−1 created using the data for 
the samples up to the n－1th one is used.

 MD
kn n n n= ( )−

−1
1
1sx Corr sxT  (10)

For cases with two variables, the inverse matrix portion 
included in Eq. (10) is given as follows:
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With the following formula:
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Eq. (11) can be rewritten as follows:
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The data in Figs. 2 and 3 are for a case with two variables. In 
the experiment on the proposed method in Section 4, this 
formula is used to calculate the inverse matrix portion.

Note that If n ≤ 3, the Mahalanobis distance cannot be 
calculated for the following reasons:

• When n＝1:  No data available from the preceding cycle.
• When n＝2:  The data from the cycles up to the preceding 

one are one sampleʼs worth of data with which 
the correlation coefficient cannot be calculated.

• When n＝3:  The data from the cycles up to the preceding 
one are two samplesʼ worth of data, resulting 

in a correlation coefficient of 1, with which the 
inverse matrix cannot be calculated.

Therefore, theoretically, if n≥4, the Mahalanobis distance can 
be calculated. However, in our approach, an algorithm that 
calculates the Mahalanobis distance when n ≥ 7 is used and 
expressed as “n<7” in the flowchart. This condition is specified 
because a small sample size may result in an underestimated 
standard deviation. With a small standard deviation, new 
samples are more likely to be determined as outliers. Our 
algorithm is designed not to use any data of samples determined 
as outliers for sequential learning. As a result, an 
underestimated standard deviation may be used indefinitely 
without end, and non-outlier samples may continue to be 
determined as outliers.

With this point taken into consideration, the flowchart does 
not contain “n<4” but “n<7,” which is a temporary value. If 
this value is too small, non-outlier samples will likely be 
erroneously determined as outliers. On the other hand, if the 
value is too large, a risk occurs of increased samples that do not 
get their Mahalanobis distance calculated.

3.2.2  Run for cases with multiple variables
For cases with a single variable, as in the preceding subsection, 
a run is defined by the rule that standardized values occur 
consecutively on either the positive or negative side. The 
proposed method defines a run for cases with multiple variables 
as follows: first, the respective variables are checked 
individually to determine whether a run has been established; 
then, if a run has been established for either variable, the run is 
defined as a run for the multiple variables. This part 
corresponds to a step given as follows in the flowchart:

 Min SPC SPC maxi( ) ≥ _

3.2.3  Outlier determination method
For outlier determination, we adopted the Mahalanobis distance 
as the index for multivariate outlier determination. For the 
criterion value, we set a recommended value of 4 based on the 
determination criteria in the MT method9). Excluding data of 
samples identified as outliers from sequential learning, we made 
our outlier determination method resistant to the effects of 
outliers.

4. Experiment
This section discusses the results of applying the proposed 
method to the data from the packaging machine presented in 
Section 2.
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4.1  Run control value adjustment
Fig. 10 is a graph showing the calculation results for the 
average value Aven as red dots superimposed on the data xn from 
Fig. 2. The average value Aven showed a significant change after 
Cycle 212, which is a calculation result as intended. However, 
as with the parts encircled with yellow dotted lines in Fig. 10, 
some parts other than those after Cycle 212 also showed the 
average value changing discontinuously. The changes during 
cycles other than Cycle 212 were relatively short-lasting.

Here, the proposed method can serve two purposes: detecting 
changes, including relatively short-lasting ones, or ignoring 
relatively short-lasting changes. It is the latter that is required by 
the challenges presented in Section 2. Therefore, what follows is 
based on the method that ignores relatively short-lasting 
changes. Hence, the run length should probably be set to greater 
than 9. Fig. 11 shows a case with the run control value changed 
to 25 on a trial basis. With this change, the average value 
showed significant discontinuous changes only after Cycle 212.

This paper has revealed the importance of run control value 
adjustment. When this control value is set small, the average 
value changes discontinuously more frequently, resulting in 
increased indeterminable samples (＝6×number of change 
points) because determination is impossible during the “n<7” 
period immediately after a change. On the other hand, setting 
this control value large results in a large sample size necessary 
to determine whether a run has been established (＝run control 
value×change point). For this sample set, the pre-change 
criteria apply, making proper determination impossible. This 

relationship can be estimated as shown in Table 1, where the 
total value of indeterminable samples and samples to which the 
pre-change criteria apply is the smallest when the run control 
value is 25. This observation shows that the run control value 
needs to be adjusted to be not too large or too small.

Table 1  Numbers of indeterminable samples and samples to which pre-change 
criteria apply

Run control 
value

Number of
change points

Indeterminable
samples

Samples to which
pre-change criteria apply Total

9 7 42 63 105

25 1 6 25 31

50 1 6 50 56

75 1 6 75 81

4.2  Results comparison with the conventional methods
The proposed method was implemented and compared with 
conventional methods. The conventional methods used for 
comparison were based on the following two types of learning: 
batch learning and sequential learning. The point common in 
both is that the Mahalanobis distance MD is calculated.

The proposed method was implemented with the run-length 
criterion value set to 25 based on the results from Subsection 
4.1. The batch learning-based method uses the samples from 
Cycle 1 to Cycle 24 as the learning data and performs MD 
calculation based on the average value, standard deviation, and 
correlation coefficient for these data. The sequential learning-
based method calculates and updates the average value, standard 
deviation, and correlation coefficient sequentially from Cycle 1 

Fig. 10 Average value calculation results for a case with the run control value set to 9

Fig. 11 Average value calculation results for a case with the run control value set to 25
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and uses these values to perform MD calculation. Unlike the 
proposed method, this method does not default to n＝1 at the 
occurrence of a run.

Fig. 12 shows the results. “Without foreign matter” refers to 
a group of samples with no foreign matter jammed in. “With 
foreign matter” refers to a group of samples with foreign matter 
jammed in. The three methods were compared regarding the 
MD distributions for these groups. The batch and sequential 
learning-based methods showed a significant overlap between 
the distributions with and without foreign matter. In contrast, the 
proposed method showed relatively separate distributions.

For each method, Fig. 13 shows the false positive rate, in 
other words, the proportion of samples exceeding the minimum 
Mahalanobis distance MD set as the criterion for samples with 
foreign matter from among those not containing any. That is to 
say, the figure shows the error rates for cases with a criterion 
specified to ensure that samples with foreign matter were 
determined defective. The proposed method showed a rate of 
18%, an approximately 50 percent improvement from the rates 
of around 70% shown by the two conventional methods. Thus, 
the proposed method has been proven effective for the data 
fluctuations shown in Figs. 2 and 3.

Fig. 13 False positive rate comparison between the proposed method and the 
conventional methods

Fig. 12 Mahalanobis distance comparison between the proposed method and the conventional methods

5. Conclusions
Data from manufacturing sites may exhibit abrupt changes. 
How to accommodate such changes poses one of the challenges 
in applying machine learning to manufacturing sites.

We applied sequential learning algorithms and the idea of the 
stable state index in control charts to the above challenge to 
propose an anomaly determination algorithm that can 
automatically track and adapt to changes. Applying this 
algorithm to the data from an experiment using a packaging 
machine, we confirmed that the proposed method showed a 
false positive rate of 18%, an approximately 50 percent 
improvement from the rates of around 70% shown by the two 
conventional methods used for comparison.

In implementing our approach, the task of run length setting 
is left to the user. Our approach performs automatic run-based 
fluctuation detection and automatically obtains learning data by 
sequential learning. However, this adjustment also faces the 
challenge of making settings automatically to suit the nature of 
the phenomenon of interest.

Our approach assumes situations where average values are 
maintained for a certain period before and after abrupt changes 
that may occasionally occur. As such, our approach cannot 
handle phenomena that continue changing constantly without 
average values maintained for a certain period. For these 
phenomena, the challenge is to devise an alternative algorithm. 
Building also on the remaining challenges above, we will 
consider incorporating the technology presented herein into 
OMRONʼs controllers and other ways of contributing to solving 
customersʼ challenges.
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