
HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

Contact : HASEGAWA Naoto naoto.hasegawa@omron.com

Custom Mechanics to Realize 
Virtualization of Whole Facility Using 
Physical Simulation
HASEGAWA Naoto, IWAMURA Shintaro, SHIMAKAWA Haruna and 
 SHIRATA Seito

In recent years, rapidly changing market needs has led to a trend of shorter product lifecycles. To keep up with 
such market trends, it is necessary to shorten the launch time for production facilities. We introduced 
virtualization technology in our FA integrated development environment, Sysmac Studio, which enabled 
debugging without physical machines using a 3D simulation. A production facility consists of various elements, 
such as robots and peripheral devices, and if it contains even a single device that cannot be reproduced in the 
virtual environment, a 3D simulation of the whole facility is not possible. Although a 3D simulation is realized by 
the combination of virtualization models of each mechanism, our conventional virtualization technology only 
supported general mechanisms, and virtualization models were not available for the unsupported mechanisms. To 
solve this challenge, we have developed virtualization models for Custom Mechanics that allow users to easily 
define movements of movable parts and joint points. This enabled a 3D simulation of a facility containing the 
mechanisms that had not been supported and further contributed to a reduction in the launch time.

1. Introduction
Consumer preferences have become increasingly changeable in 
recent years, requiring timely product launches. Consequently, 
the rapid start-up of production facilities has become a 
necessity. OMRON integrated virtualization technology into its 
FA-integrated development environment, Sysmac Studio, to 
support 3D simulation-based facility pre-verification1).

3D simulation involves virtualizing pieces of equipment that 
constitute facilities. Sysmac Studio has 13 different virtualization 
models of general-purpose mechanical mechanisms available for 
facility virtualization. The user specifies the mechanism type for 
each mechanism constituting the equipment to be virtualized, 
imports movable part CAD data, and sets predetermined 
settings. This function enables the virtualization of XY-tables, 
orthogonal robots, and other equipment containing various FA 
industry mechanisms. However, it is still impossible to virtualize 
equipment containing physical joints, such as manufacturersʼ 
proprietary motion or clamping mechanisms, which do not 
correspond to any of the 13 predefined mechanism types. 
Consequently, 3D simulation-based facility pre-verification has 
been unattainable if any equipment contains even one of these 
unsupported mechanisms.

To address this problem, we created Custom Mechanics 
virtualization models, which allow the user to freely configure 
the motions of movable parts or the methods of connecting 
them.

This paper describes in Section 2 the effects of our 
conventional virtualization technology and its challenges. 
Section 3 provides detailed information on the technology 
required to develop Custom Mechanics. Section 4 presents the 
results of the effectiveness verification for Custom Mechanics. 
Finally, Section 5 summarizes this paper and discusses future 
directions and challenges.

2. Conventional technology and challenges
2.1 OMRON’s previous virtualization technology and its 

effectiveness
Before virtualization technology became widespread, production 
facility development typically relied on real machines only. To 
reduce the required man-hours for production facility start-up, 
OMRON incorporated production facility virtualization 
technology into its FA-integrated development environment, 
Sysmac Studio. Fig. 1 illustrates a typical configuration of a 
complete production facility, which includes the following 
components: an I/O for sensor control, an image sensor (Vision 
Sensor), a servomotor for peripheral device control, and a robot. 

1

OMRON TECHNICS Vol.55.013EN 2023.7



These components perform detection, transfer, and other 
workpiece/parts-related tasks. To achieve the virtualization of 
these components, we developed five virtual modules: virtual 
I/O, virtual vision sensors (virtual image sensors), virtual 
mechanics (virtual peripheral device), virtual robots, and virtual 
parts (virtual workpieces). Fig. 2 shows an example of the 
achieved production equipment virtualization.

Fig. 1  Typical configuration of a production facility control system

Fig. 2  Example of production equipment virtualization

We found that through the active use of our conventional 
technology, start-up man-hours could be reduced by 56% 
compared to relying exclusively on real machines1). Fig. 3 
compares two development processes leading to production 
facility start-up: one reliant exclusively on physical machines 
and the other involving virtualization technology.

Fig. 3  Comparison  of  development  processes  leading  to  production  facility 
start-up

2.2 Challenges to our conventional virtualization technology
Among the components of production facilities, peripheral 
devices exhibit an exceptionally wide variety. The mechanical 
mechanisms constituting our conventional virtual mechanics 
support 13 general-purpose types, including linear motion 
mechanism, rotary motion mechanism, and air cylinder. These 
types are defined as creatable mechanisms. However, peripheral 
devices are often custom built to suit usersʼ production 
facilities. Custom-made peripheral devices may contain 
mechanisms not supported by the 13 general-purpose types. 
More specifically, these mechanisms include electric cylinders 
and chucks, which have varying detailed settings depending on 
the manufacturer, and clamping mechanisms that require 
simulations of physical phenomena. Our conventional 
virtualization technology cannot reproduce peripheral devices 
containing such mechanisms as 3D objects in a virtual space. If 
a production facility contains even one peripheral device that 
cannot be reproduced as a 3D object, it becomes impossible to 
3D simulate the facility in a virtual space. Consequently, 
reliance on real machines becomes necessary to debug or adjust 
such peripheral devices, reducing productivity. It is crucial to 
reproduce these peripheral devices as 3D objects to achieve a 
3D simulation of an entire facility in a virtual space.

3. Development of Custom Mechanics
To address the challenge described in Section 2 regarding our 
conventional technology, we focused on developing a function 
that enables users to create virtualization models of any 
mechanism. Suppose the user could freely modify 
manufacturer-specific setting items and values, define their 
original mechanisms, including physics simulations, and 
integrate them into their virtualization models. This 
advancement would allow the user to 3D simulate an entire 
facility in a virtual space, effectively solving the challenge 

HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

2



HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

mentioned above. We refer to a module with this function as 
Custom Mechanics, distinguishing it from virtual mechanics, 
which supports the 13 types of general-purpose mechanical 
mechanisms.

The critical elements in the development of Custom 
Mechanics are movable-parts connection joints. The user must 
simulate physical phenomena using physics simulation 
technology to reproduce joint motions as simulations. 
Subsection 3.1 presents a solution to the challenges in that 
development. Subsection 3.2 discusses a technology that 
synchronizes Custom Mechanics with the pre-existing virtual 
modules to enable the 3D simulation of an entire facility in a 
virtual space. Subsection 3.3 describes a technology with which 
the user can easily configure the complicated system, including 
Custom Mechanics.

3.1 Developing movable-parts connection joints
To reproduce as a 3D object a mechanism that incorporates 
movable parts interconnected according to physical phenomena, 
the user needs to perform a physics simulation of the 
interconnection of the movable parts to establish constraints on 
their relative motions. Sysmac Studio relies on the PhysX real-
time physics engine provided by NVIDIA for physics 
simulations. PhysX comes with a D6 Joint predefined to control 
the x-, y-, and z-axes and their rotations separately from each 
other2). However, the D6 Joint does not directly represent the 
mechanisms of the joints of mechanisms and hence, with its 
default interface, cannot serve as the Custom Mechanics joint 
intended for quick and easy configuration. Then, to provide 
intuitively user-friendly Custom Mechanics joints, we defined 
joints referring to the classification of mechanisms presented in 
a reference (“Karakuri Designs”), a collection of mechanism 
formulas for mechanism designs3). Based on their definitions, 
we customized the D6 Jointʼs interface to develop our original 
group of joints listed below in Table 1:

Table 1  Group of Custom Mechanics joints

Joint Descriptions

Fixing joint A connection method for fixing two movable parts

Hinge joint A  method  of  connecting  two  movable  parts  via  a  hinge 
joint

Ball joint A method of connecting two movable parts via a ball joint

Slider joint A  method  of  connecting  two  movable  parts  in  a  linear 
direction

Revolute joint A method of connecting two movable parts rotatably about 
a single axis

Parent-child joint A  connection  method  based  on  the  parent-child 
relationship between two movable parts

Fig. 4 illustrates the motion of the slider joint as an example 
of our original joints. This joint was created by locking all 
translational and rotational motions of the D6 joint, except those 
with respect to the x-axis. Similarly, the other joints, apart from 
the parent-child joint, were created by locking the specific 
motion directions of the D6 joint.

Fig. 4  Slider joint

The parent-child joint was developed to reproduce as 3D 
objects mechanisms, such as an electric chuck mechanism, 
which combines the motion axis-based position control of a 
programmable logic controller (PLC) with a joint mechanism. In 
this mechanism, one movable part is set into motion by PLC 
motion control, and its motion is followed by the other movable 
part containing a joint. These two movable parts rely on a 
parent-child relationship between them to have their relative 
coordinates updated. When each part of the mechanism is simply 
set into motion, the part position to be followed is updated in the 
motion cycle next to the current one. Consequently, when the 
mechanism is viewed as a whole, a delay occurs with respect to 
the initially predicted position. To address this issue, we ensured 
that the following sequence of operations occurs on a 
mechanism-by-mechanism basis: updating the movable partsʼ 
positions according to the PLCʼs motion-axis command value, 
performing a physics simulation of the joint using the freshly 
updated position data, and determining the 3D world coordinates 
of the whole mechanism based on the simulation results. As a 
result, it has become possible to simulate the motions of 
mechanisms containing a parent-child joint in sync with those of 
other mechanisms. These technical improvements led to the 
fruition of Custom Mechanics, significantly expanding the range 
of virtualizable equipment.

3.2 Achieving inter-component synchronization for enabling 
3D simulations of whole facilities

Fig. 5 shows the overall system configuration of Sysmac 
Studio:

3



Fig. 5  Overall system configuration
(Green–Objects to be virtualized; Yellow–Virtualization engines;  

Orange–Software platforms)

The common framework provides the foundation for making 
all the virtualized modules function on a single piece of 
software. The time manager manages the execution timing of 
each engine. Its details will be presented later. Then, the virtual 
programming engine (virtual programming environment) 
executes programs for production facility control and 
simulation. The PLC simulator simulates the operation of the 
real PLC. The 3D engine manages 3D model geometry data of 
production facilities in their entirety, provides 3D display 
functions, and checks models for interference. The physics 
engine performs computational operations for gravity or physics 
simulations. The modules that serve on the 3D engine as the 
virtualized forms of the production facility elements of robots, 
peripheral devices, I/O devices, image sensors, and workpieces 
are the virtual robot, virtual mechanics (virtual peripheral 
device), virtual I/O, virtual vision sensors (virtual image 
sensors), and virtual parts (virtual workpieces). This time, we 
added a virtual Custom Mechanics (virtual custom mechanical 
mechanism) module. Note that the modules modified then by 
adding an interface or otherwise are highlighted with a blue 
box.

To provide the virtual environment in Fig. 5, including 
Custom Mechanics, all the elements in the system must function 
synchronously with each other. If the systemʼs functions are 
mutually out of sync, each simulation run yields different results 
from those of others. Consequently, in such cases as when the 
Custom Mechanics module is used to pick workpieces flowing 
on the conveyor and place them on another conveyor, problems 
occur, such as inaccurate picking. Besides, failure to achieve 
high-speed inter-component synchronization results in the 
problem of unsmooth rendering on the 3D display screen.

What it takes to solve these problems is to achieve high-
speed synchronization between Custom Mechanics and the pre-
existing modules of the system. Fig. 6 shows the relationship 
between the processes, i.e., the run units of the modules in the 

subsystem containing Custom Mechanics extracted from the 
system shown in Fig. 5. To attain high-speed inter-process 
communication, we achieved inter-process synchronization, 
using EventObject in the Windows operating system. As a 
result, an inter-process communication speed of approximately 
0.02 ms became available, enabling smooth monitoring of 
motions on the 3D display screen even in cases where Custom 
Mechanics is involved.

Fig. 6  Process configuration of Sysmac Studio

In addition, the data exchange speed between different 
elements in the memory space in the Sysmac Studio process 
also poses a challenge to 3D simulations of the gravity or 
collisions between Custom Mechanics joints and workpieces as 
closely as possible to real-time actions. Sysmac Studio uses 
Shape Script, a C#-based general-purpose programming 
language for virtualization, to reproduce workpiece motions as 
simulations in a virtual space. Shape Script, implemented in the 
virtual programming engine, reads and writes values to and 
from the PLC simulator variables. As such, Shape Script 
requires high-speed communication with other components in 
the Sysmac Studio process. High-speed communication between 
the virtual programming engine and the other components is 
provided using the .NetRemoting framework for high-speed 
communication between different elements in the memory space 
provided by the operating system1,4). In Custom Mechanics, a 
dedicated interface for Shape Script to synchronize mechanism 
motions is provided to use these communication frameworks 
and achieve 3D simulations close to real-time actions.

To ensure the system-wide management of inter-component 
synchronization involving Custom Mechanics for the whole 
system, we expanded the time manager1), which manages the 
timing of each component. Fig. 7 shows the time chart for the 
simulation time synchronization across the whole system.

HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

4



HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

Fig. 7  Time chart for simulation time synchronization using time manager

By allowing the time manager to manage mechanism 
motions in virtual Custom Mechanics, we achieved successful 
operational synchronization between the Custom Mechanics and 
pre-existing virtual modules.

3.3	 Solving	 the	 usability	 issues	 in	 configuring	 Custom	
Mechanics

This subsection discusses the challenges in enabling user-
friendly configuration of Custom Mechanics and our solutions 
to them.

3.3.1 Developing a snap function for easy joint position 
setting

As mentioned above, we used physics simulations to reproduce 
Custom Mechanics joint motions as simulations. Physics 
simulation cannot be performed accurately without precisely 
determining the joint position between the movable parts 
involved. As shown in Fig. 8, a joint position can be set using 
mouse operations. However, some target positions may not 
appear on the screen. In addition, the accuracy of point 
movements varies depending on the userʼs mouse operations. 
These factors make it challenging to set joint positions 
accurately.

Fig. 8  Setting a joint position using mouse operations

As a solution to this problem, we developed a snap function. 
When the user clicks and chooses a specific 3D object and 
moves the mouse cursor onto another 3D object, this function 
indicates feature points close to the mouse cursor, such as the 
two ends of a nearby edge or the center of gravity of a nearby 
face, so that the user can move the target object to such points 
by clicking on them. The face nearest to the mouse cursor must 
be searched to allow the snap function to make candidate 
destination points appear on the screen. However, this search for 
the snap destination point requires much computation, affecting 
the userʼs mouse operation or otherwise reducing performance. 
To reduce the amount of computation, we chose to simplify 3D 
objects using cuboids. Fig. 9 shows two simplification methods 
available: OBB and AABB. Considering that our point of 
interest related to operability, we selected the AABB method, 
which has an edge in response speed.

Fig. 9  OBB vs. AABB

The method that applies AABB for simplification is used to 
identify the foremost object from among the objects in the area 
the mouse cursor indicates. This method of identifying the 
foremost object is established as the sequence of the following 
steps: creating a ray that connects the camera to the mouse 
cursor and obtaining the object closest to the camera from 
among the 3D objects intersected by the ray. Then, each internal 
geometry data constituting the identified 3D object is bounded 
with a cuboid for a search to identify the foremost face. The 
information of the two ends of the nearest edge or the center of 
gravity of the nearest face is obtained from the identified face to 
render these points as the Snap destinations on the screen.

We added an improvement enabling computational 
processing in the background to achieve further performance 
enhancement. Computations are always performed for the point 
where the mouse cursor is. New computations occur when the 
mouse cursor moves. When the mouse cursor is moved too fast, 
no snap destination appears on the screen because of the 
processing performed in the background. However, as the 
mouse cursor is brought closer to the snap target and is moved 
slower, the snap destination point or points appear on the 

5



screen. This improvement was achieved as a result of designing 
it with a focus on the userʼs method of mouse operation. More 
specifically, the improvement was designed considering the 
human tendency to move the mouse quickly until near the target 
coordinates and slowly near the target position. Fig. 10 shows 
how to specify a joint position using the snap function 
developed through these technical efforts. When the mouse 
cursor is moved closer to the target position after selecting a 
joint and going into snap mode, a light blue point appears on 
the screen. When this light blue point is clicked, the joint moves 
to it.

Fig. 10  Specifying a joint position using the snap function

Thus, we developed an operationally user-friendly, intuitively 
natural snap function, enabling accurate positioning of joint 
positions necessary for physics simulations.

3.3.2 Developing a motion setting function that makes it 
simpler	 to	 define	 the	 motions	 of	 multiple	 movable	
parts

Electric chucks are among the critical mechanisms desired to be 
reproduced as Custom Mechanics objects. Intended to grip an 
object with multiple jaws, an electric chuck is required to get 
multiple movable parts into motion as a set. To serve this 
purpose, a standard electric chuck has a distinctive function 
known as the motion number function5). This function bundles 
the speeds, positions, and other motion features of multiple 
movable parts into a group of settings in advance and assigns a 
number to that group of settings. For example, SMCʼs step 
motor controllers, which can control electric chucks, perform 
operation control according to step-data instructions, which are 
collections of motion instructions for multiple movable parts. To 
enable motions of multiple movable parts in Custom Mechanics 
according to step-data instructions, one must define the motion 
of each movable part in Shape Script. However, a typical 
Custom Mechanics object must have ten-odd numbers of step 
data defined. An extremely complicated script would be 
necessary to manage that many step data. Besides, the control 
program must be modified to associate these data with their 
corresponding motion number specification PLC variables, 
posing another barrier to the user.

Accordingly, we developed a new function equivalent to the 
electric chuck motion number function. This new function can 
bundle the motion settings for multiple movable parts into an 
easily manageable group. This function automatically and 
internally calculates speeds and positions based on motion 
settings, associating these values with motion number 
specification PLC variables. In addition, we provided a table-
format user interface shown in Fig. 11, on which the user can 

Fig. 11  Custom Mechanics’ Motion Settings screen

HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

6



HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

intuitively make these motion settings.
The Motion Settings screen allows the user to select a linear, 

rotational, or linear-rotational motion direction for each movable 
part of a Custom Mechanics object and preset up to 64 motions 
corresponding to each motion direction. Table 2 shows the 
contents of the settings to be made for each motion direction.

Table 2  Motion directions and motion settings

Motion direction Motion setting content

Linear

The linear speed [mm/s] and target position [mm] are to be 
specified  to  indicate  that  the movable  part  linearly moves 
at  the  specified  linear  speed  [mm/s]  until  reaching  the 
target position [mm].

Rotational

The  rotational  speed  [degrees/sec]  and  target  angle 
[degree]  are  to  be  specified  to  indicate  that  the movable 
part rotates at the specified rotational speed [degrees/sec] 
until reaching the target angle [degree].

Linear-rotational

The  linear  speed  [mm/s],  target  position  [mm],  rotational 
speed  [degrees/sec],  and  target  angle  [degree]  are  to  be 
specified  to  indicate  that  the movable  part  linearly moves 
at  the  specified  linear  speed  [mm/s]  until  reaching  the 
target  position  [mm]  and  then  rotates  at  the  specified 
rotational  speed  [degrees/sec]  until  reaching  the  target 
angle [degree].

Each movable part must be assigned with the following 
setting parameters: start positioning I/O variable, finish 
positioning I/O variable, specify motion number variable, and 
get current value variable. Table 3 shows the descriptions of 
these variables. While the start positioning I/O variable is on 
(True), each movable part moves at the speed of the motion 
number specified by the specify motion number variable toward 
the target position of the motion number. Then, when the 
movable part stops at the target position, the finish positioning 
I/O variable turns on. The current values of the movable part 
are always written out to the get current value variable. The 
variables of the controllers or the I/O signals of the robot can be 
assigned to the above variables. As explained in Subsection 3.2, 
the fetching and writing of these variablesʼ data are managed to 
occur in sync across the whole system.

Table 3  Variables assignable to movable parts

Variable Descriptions

Start positioning I/O variable
While  on,  this  variable  sets  a  movable  part 
into motion according to the settings of the 
specified motion number.

Finish positioning I/O variable This  variable  turns  on  when  the  movable 
part reaches the target position.

Specify motion number variable
This  variable  specifies  the  motion  number 
for  the movable part  from among up  to  64 
user-settable motions.

Get current value variable The  current  position  of  the movable  part  is 
always written out to this variable.

Fig. 12 shows typical motions of an electric chuck with two 
jaws/movable parts, with two motion setting values assigned to 
each jaw. The motions are defined so that the chuck closes with 
Motion Number 0 and opens with Motion Number 1. To define 

these motions, the user only has to fill in the necessary items on 
the Motion Settings screen.

Fig. 12(A) shows the initial state where the chuck is closed. 
When the specify motion number variable is set to the value “1,” 
and the start positioning I/O variable is switched to the value of 
“TRUE,” as shown in Fig. 12(B), the movable parts move 
toward a target position of 12 mm at a linear speed of 10 mm/s 
according to the motion setting for Motion Number 1. When the 
movable parts reach the target position for Motion Number 1, 
the start positioning I/O variable takes the value of “FALSE,” as 
shown in Fig. 12(C). Meanwhile, the finish positioning I/O 
variable takes the value of “TRUE.” Consequently, the chuck 
goes into the open position. Then, when the specify motion 
number variable is set to the value of “0,” and the start 
positioning I/O variable is switched to the value of “TRUE,” as 
shown in Fig. 12(D), the movable parts move toward a target 
position of 0 mm at a linear speed of 10 mm/s according to the 
motion setting for Motion Number 0. When the movable parts 
reach the target position for Motion Number 0, the finish 
positioning I/O variable takes the value of “TRUE,” putting the 
chuck in the closed position, as shown in Fig. 12(E).

Fig. 12  Typical motions according to motion settings

7



As explained in this subsection, we developed a motion 
setting function that bundles together motions of multiple 
movable parts and puts them into motion as a single group. 
With this function, the user can now easily define complicated 
motions of Custom Mechanics objects.

4. Verifying the effectiveness of Custom 
Mechanics

Aiming to verify the effectiveness of the virtualization 
technology made available by Custom Mechanics, we built a 
door switch mounting system integrated with a robot and 
Custom Mechanics as an example of equipment containing all 
the technical elements discussed herein.

In this door switch mounting system, the Viper 650 vertical 
multi-joint robot transfers the body and head of a door switch in 
order and mounts the door switchʼs head onto its body. At the 
destination, a clamping mechanism holds down the body in 
position so it can be mounted with the head. In the system, the 
rotary table and electric chuck attachments to the end effector of 
the Viper 650 and the clamping mechanism for holding the body 
down are reproduced as Custom Mechanics objects. Fig. 13 
shows the configuration of the system used for verification. 
Table 4 provides the descriptions of the individual mechanisms.

Fig. 13  Configuration of the door switch mounting system  
(Red boxes: Custom Mechanics objects)

Table 4  Mechanisms in the door switch mounting system

Item Descriptions

Viper 650 A PLC-controlled vertical multi-joint robot.

Body (Door switch) A  workpiece  to  be  transferred,  on  top  of 
which the Head is to be mounted.

Head (Door switch) A workpiece to be transferred and mounted 
on top of the Body.

Part Sensor A sensor that detects that the workpiece  is 
held down in the fixation position.

Custom 
Mechanics 
objects

Rotary table A  Custom  Mechanics  object  that  turns  to 
adjust the end-effector position.

Electric chuck A  Custom Mechanics  object  that  grips  the 
workpieces.

Clamping mechanics
A  Custom  Mechanics  object  that  holds 
down the Body to mount the door switch’s 
Head on it.

This verification covered the processes from mechanism 
design through real machine building and control design to 
control debugging, including overall verification, for the door 
switch mounting system. We recorded the man-hours spent on 
these processes for comparison with and without our new 
virtualization technology. Fig. 14 shows the results of the 
comparison.

Fig. 14  Results of man-hours comparison with and without our new virtualization 
technology

Without the help of the new virtualization technology, the 
start-up took 63 days as shown in Fig. 14. Conversely, the 
required time was reduced to 43 days with the help of the new 
virtualization technology. Thus, an approximately 32-percent 
reduction of start-up man-hours was achieved with this 
technology.

When the new virtualization technology was not used, a 
waiting time occurred because control debugging remained 
impossible after the mechanism design stage started until all the 
real machines were ready for use upon completing the real 
machine-building stage. On the contrary, when the new 
virtualization technology was used, the whole system was 
completed in a shorter time because the control debugging stage 
proceeded simultaneously with the real machine-building stage 
without waiting for the latter to complete.

HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

8



HASEGAWA Naoto et al. Custom Mechanics to Realize Virtualization of Whole Facility Using Physical Simulation

The use of any real machine for the teaching process in 
control debugging leads to an increase in man-hours because the 
robot must be operated at a lower speed to avoid equipment 
damage due to interference. Meanwhile, the use of our new 
virtualization technology enables the high-speed operation of 
virtual robots in a virtual space, thereby reducing teaching time. 
In addition, the final adjustments with the real machines 
required almost nothing but checks and fine-tuning, reducing the 
hours worked with the real machines. Consequently, the overall 
man-hours for control debugging were also reduced.

Moreover, programs created using our virtualization 
technology and debugged without using any hardware can be 
applied as they are to real machines. Hence, unlike conventional 
virtualization simulations, these programs need no additional 
programming at the start-up of real machines, thereby helping to 
reduce the lead time before starting the verification work with 
real machines.

5. Conclusions
This paper discussed how to implement and apply Custom 
Mechanics incorporating physics simulation technology to solve 
the problem that 3D simulation-based facility pre-verification is 
impossible when any equipment contains even a single 
mechanism unsupported by our conventional technology.

We achieved successful operational synchronization between 
the Custom Mechanics module and the pre-existing virtual 
modules for 3D simulations of various movable-parts 
connection joints or facilities in their entirety. Besides, we 
solved the usability issues involved in the use of Custom 
Mechanics, including the joint position Snap function or the 
motion setting function.

As applied to door switch system manufacturing, our new 
technology was observed to cut the man-hours by 32% and was 
verified for effectiveness. As such, this technology enables 
short-term start-up of production facilities, thereby contributing 
to timely product launches.

Moving forward, we intend to advance our virtualization 
technology further to achieve the virtualization of gears, cams, 
and other mechanisms that require additional intrinsic-parameter 
settings and are yet to be virtualized as Custom Mechanics. 
Alternatively, we would like to avidly introduce technologies, 
such as finite element method technologies not incorporated yet 
in Sysmac Studio, to enhance the applicability of virtualization 
to a broader range of facilities and equipment, including flexible 
objects.

References
1) H. Shimakawa and S. Iwamura, “Production Equipment 

Virtualization Technology by Integrated Development Environment 
for Factory Automation,” (in Japanese), OMRON TECHNICS, vol. 
53, no. 1, pp. 8-16, 2021.

2) PhysX Joints, “NVIDIA PhysX SDK 3.4.0 Documentation,” https://
docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/
Manual/Joints.html (accessed Jan. 13, 2023).

3) H. Kumagai, A Must-Have Collection of Mechanism Formulas for 
“Karakuri Designs” - Starting Simplified Automation with Zero 
Prior Knowledge. Nikkan Kogyo Shimbun, Ltd. (in Japanese), 
2017.

4) Microsoft, “Outline of NET Remoting Framework,” (in Japanese), 
https://learn.microsoft.com/ja-jp/previous-versions/msdn/architecture- 
center/cc440094(v=vs.71) (accessed Jan. 13, 2023).

5) SMC, “Controller (Step-Data Input Type) JXC51/61 Series,” (in 
Japanese), https://ca01.smcworld.com/catalog/Electric/mpv/s100-
136-JXC51-61/data/s100-136-JXC51-61.pdf (accessed Feb. 6, 
2023).

About the Authors

HASEGAWA Naoto (Engineering)

Software Development Dept. 1, Controller Div.
Product Business Division HQ.
Industrial Automation Company
Specialty: Software Engineering

IWAMURA Shintaro (Engineering)

Software Development Dept. 1, Controller Div.
Product Business Division HQ.
Industrial Automation Company
Specialty: Software Engineering
Affiliated Academic Society: The Robotics Society of Japan

SHIMAKAWA Haruna (Engineering)

Software Development Dept. 1, Controller Div.
Product Business Division HQ.
Industrial Automation Company
Specialty: Software Engineering

SHIRATA Seito (Engineering)

Software Development Dept. 1, Controller Div.
Product Business Division HQ.
Industrial Automation Company
Specialty: Software Engineering

The names of products in the text may be trademarks of each company.

9


