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In recent years with the trend toward IoT, there has been an increase in cases of causal analysis for product 
defects in the Factory Automation (FA) field. However, a conventional method is not effective because the 
collected data has low independence by multiple processes and synchronous control. To solve the issue, we focus 
on a PLC control program that has information of them. In this paper, we propose a method to integrate 
knowledge from the PLC control program by applying a program slicing technique into data analysis. In addition, 
we show the method is effective for cases that do not work by the conventional one with an automatic packaging 
machine.

1. Introduction
Following the recent widespread use of IoT (Internet of Things), 
there have been increasing cases of collecting sensing or control 
data from shop floors in the FA field for product defect factor 
analysis1,2). However, as can be seen from the fact that Ishikawa 
diagrams3) are used to organize domain knowledge information 
in the field of quality control, the analysis of collected data alone 
cannot easily enable the identification of appropriate factors.

Traditional assumptions have it that factor analysis based on 
decision tree importance values serves well as an approach to 
addressing a defect or trouble that may be encountered4,5). 
However, a total reliance on the decision tree importance 
calculated from control data will often result in selecting too 
many potential factors to reach the true cause. The cause is that 
the only data available is the synchronized data of multiple 
processes and low in stochastic independence.

In the FA field, mainly physical assembly or processing 
processes are automated to manage high production capacity 
and high-quality production at a high operating ratio, 
thereby improving the overall equipment efficiency defined 
as operating ratio×performance×quality6). Therefore, FA 
control technologies are characterized primarily by multi-
process parallelization for higher production capacity and high-
precision synchronous control for higher quality. As a result, 
control data collected from shop floors are characterized by low 
independence because of the synchronous control of multiple 
processes.

Taking note of a PLC control program containing multi-

processing and synchronous control information, we propose to 
extract knowledge information from the control program and 
integrate it into data analysis. Our proposed method uses a 
program slicing technique to merge a variable dependence 
graph generated from the PLC control program with a structural 
change graph generated from control data, thereby enhancing 
the independence of control data to improve the accuracy of 
factor estimation. What follows presents an experiment 
performed using an experimental packaging machine to 
demonstrate that our proposed method can identify event factors 
unidentifiable by the conventional method.

2. Conventional method and its problems
This section describes the behavior of the packaging machine, 
the targeted system, to explain the problem with control data of 
low stochastic independence due to multiple synchronized 
processes in a control system.

2.1 Targeted system
Fig. 1 shows the experimental packaging machine, which is the 
targeted system.

Fig. 1  System configuration of the packaging machine
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The targeted packaging machine is a horizontal pillow 
packaging machine used to package products with resin-made 
film. Its PLC synchronously controls four servomotors to 
automate the packaging process. This packaging machine 
consists of three processes, a workpiece feed process with 
fingers feeding out workpieces, a center seal process, and an 
end seal process to pack workpieces in pillow-shaped packages. 
The four servomotors are controlled as a conveyor shaft for 
workpiece feed, film feed shafts 1 and 2 for the center seal 
process, and a top seal shaft for the end seal process, 
respectively. Their respective torque, velocity, and position 
signals are collected as control data. Incidentally, product defect 
factor analysis based on these control data adds the benefit of 
making it unnecessary to retrofit sensors to the machine.

2.2 Conventional method
A typical conventional factor identification method consists of 
the following steps:

1. Calculate feature quantities from control data.
2. Compute the decision tree importance from all the feature 

quantities.
3. Identify the condition corresponding to the highest-

importance feature quantity as the factor.

Fig. 2 shows a conceptual diagram of feature quantity 
calculation from control data:

Fig. 2  Conceptual diagram of feature quantity calculation

For the purposes here, collected control data are divided into 
manufacturing cycle units called “frames” to calculate multiple 
statistical quantities, such as mean value and standard deviation, 
as feature quantities. In the case of the packaging machine 

above, the frame is the unit for packaging workpieces.
Next, for all the feature quantities, their importance values 

are calculated to select feature quantities with higher importance 
values. The conventional practice has been to identify 
conditions corresponding to these feature quantities as factors. A 
decision tree is a machine learning method that performs 
classification or regression using a tree structure. What is meant 
here by “importance” is the decrease in the Gini coefficient 
before and after a normal/anomalous determination based on 
each feature quantity. The greater the value is, the better a 
feature quantity serves as a normal/anomalous discriminant 
variable.

2.3 Problem with the conventional method
Fig. 3 shows a typical scatter diagram of feature quantity data 
used in the conventional method. The scatter diagram shows the 
relationship between normally packaged workpieces and those 
packaged during the application of disturbance as a quasi-
anomaly to the conveyor shaft in terms of the torque mean 
value calculated as a feature quantity from the control data of 
the four servomotors. With multiple synchronized processes in 
the targeted packaging machine, the disturbance applied to the 
conveyor shaft for the workpiece feed process was reflected in 
the torques of the servomotors for the downstream process. In 
particular, the film feed shaft 1 and the top seal shaft showed 
high relationships with their correlation coefficients, with the 
conveyor shaft being 0.75 and 0.79, respectively. These results 
indicate that high-precision synchronous control performed by 
the PLC reduces the independence among the control data. 
Table 1 shows the results of our attempt to calculate the 
decision tree importance values of these feature quantities to 
identify the factor.

Table 1  Results of the decision tree importance as the conventional method

Feature quantity Importance (rank)

Top Seal Shaft torque minimum value 0.129 (1)
Top Seal Shaft position minimum value 0.126 (2)
Top Seal Shaft torque maximum value 0.112 (3)

Conveyor Shaft torque mean 0.074 (7)

We used RandomForest as the decision-tree algorithm to 
show in the table three high-importance feature quantities, along 
with the importance value of the feature quantity indicating the 
true factor. This example assumed that the disturbance to the 
conveyor shaft would appear in the conveyor shaft torque, the 
importance value of which ranked seventh among the 48 
different feature quantities. Although relatively high, this 
importance value was lower than those of the feature quantities 
of the top seal shaft in the downstream process and failed to 
identify the correct factor. This failure means that a decision 
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tree importance value calculated from a control data aggregate 
containing data of low independence does not serve well as a 
factor identification method.

3. Our proposed method
3.1 Outlines of our proposed method
Our approach to separate data of low independence is to extract 
a control flow containing process-related and synchronous 
control-related information from the PLC control program and 
merge the control-data relationship into the control flow, thereby 
enhancing the independence of the data to identify upstream-
process factors. Our proposed method consists of the following 
steps:

1. Perform control program analysis (program slicing) to 
extract a control flow and create a variable dependency.

2. Based on the variable dependency, create a variable 
dependence graph.

3. Create a structural change graph representing the control-

data relationship.
4. Merge the variable dependence graph and the structural 

change graph into a single graph for factor identification 
(factor identification graph).

In what follows, Subsection 3.2 explains the program slicing 
technique for generating a variable dependency, Subsection 3.3 
describes the method of generating a variable dependence graph 
in the PLC control program, Subsection 3.4 explains the method 
of generating a structural change graph, and Subsection 3.5 
describes the method of generating a factor identification graph.

3.2 Program slicing
Program slicing is a technique that applies control-dependence 
and data-dependence analyses in combination to a control flow 
graph converted from program codes to extract only codes that 
affect the variables of a specific statement in the program7).

Control-dependence analysis is a method that extracts 
relationships that occur as results of, for example, conditional 

Fig. 3  Scatter diagram of feature quantity data available from the packaging machine (feature quantity = torque mean value; r = correlation coefficient)
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branches in which the result of executing a statement affects 
whether or not to execute another statement. Meanwhile, data-
dependence analysis is a method that provides a relationship 
diagram showing which statement uses data defined by which 
statement. Focusing on a specific variable based on the results 
of these two analyses, one can trace back the chain of 
dependencies from the corresponding vertex to extract only the 
statement relevant to the variable and identify the affecting 
variable.

Program slicing for dependency extraction divides into 
backward slicing for extracting a variable affecting a variable of 
interest and forward slicing for extracting a variable affected by 
the variable of interest. Fig. 4 shows a sample program for 
extracting a control flow graph, while Figs. 5 and 6 show 
examples of applying backward and forward slicing to that 
control flow graph, respectively:

Fig. 4  Sample program

Fig. 5  Backward slicing

Fig. 6  Forward slicing

As a result of backward slicing, it turns out that the variables 
affecting sum are n and i. As a result of forward slicing, the 
variables affected by n are identified as i, sum, and prod. The 
variable dependency is expressed as:

 Dep(var1, var2) (1)

which has a value of 1 if var1 affects var2; or 0 if not.

3.3 Variable dependence graph
This subsection describes the method of generating a variable 
dependence graph from each variable dependency obtained by 
applying program slicing to a PLC control program. The PLC 
control program discussed here supports IEC 61131-38), the 
international standard for PLC programming languages. IEC 
61131-3 defines three program organization units (POUs): 
Program (PROG), Function block (FB) with internal status 
information, and Function (FUN) without internal status 
information. These POUs are intended to convert programs into 
structures on a process-by-process or function-by-function basis 
to enhance the readability and reusability of programs. Fig. 7 
shows a typical behavior of the PLC control program. In 
addition, Fig. 8 shows a typical variable dependence graph 
representing the relationships among the variables assigned to 
the devices in the program in Fig. 7 (device variables).

Fig. 7  Behavior of the PLC control program
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Fig. 8  Variable dependence graph

The PLC performs the processing of I/O refresh (Data I/O), 
user program (UPG) execution, and motion control (MC) tasks 
at strict time intervals, thereby enabling high-precision control. 
An I/O refresh task updates device variables assigned to 
actuators, such as sensors and motors. User programs are 
executed with device variables as inputs or outputs depending 
on their process or function.

Our proposed method focuses on a device variable 
representing a change in the external environment and performs 
forward slicing to create a dependency between variables. To 
this dependency, the I/O information to the FB and the FUN, 
which perform specific processing at each process, is added to 
generate a variable dependence graph. In Program 1 in Fig. 7, 
the variable var1 is entered via tmp1, the intermediate variable, 
into fun-a, which then produces var3 as an output. This flow is 
also shown by the variable dependence graph in Fig. 8. In the 
fun-a line, In is the parameter representing the input variable 
while Out is the parameter representing the output variable.

With the device variables in Fig. 8 given as XN = {var1, var2, 
... var6} = {X0, X1, ..., XN–1}, N = 6, the variable dependence 
graph is expressed by an adjacency matrix given as Eq. (2):
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The adjacency matrix is expressed as a square matrix with 
each variable as a vertex. Dep(Xi, Xj) is the dependency between 

the variables given as Expression (1). The variable dependence 
graph is represented as a directed graph.

3.4 Structural change graph
A control data relationship expression intended to be merged 
into a variable dependence graph is deemed as a simple 
structural change detection problem9). A possible approach to 
this problem is to calculate it by the correlation matrix 
difference between a normality (nondefective product) and an 
anomaly (defective product). Pearsonʼs product-moment 
correlation coefficient used in general correlation matrices 
assumes normal distributions. Accordingly, we use a mutual 
information quantity suitable to express the degree of 
dependency between time-series control data, such as the one in 
Fig. 2. This mutual information quantity is expressed as Eq. (3):
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Xi and Xj are a pair of control data delimited by the interval 
required to process the packaging of a single product. The 
calculation method for the mutual information quantity goes as 
follows: divide the filled data space in random grids; and, using 
the maximal information coefficient (MIC)10), search for a grid 
that maximizes the mutual information quantity.

The mutual information quantity matrix, Amic(XN), calculated 
across all the control data is expressed as Eq. (4):
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Tables 2 and 3, respectively, show a typical mutual 
information quantity matrix of normal and anomalous data:

Table 2  Mutual information quantity matrix of normal data

var1 var2 var3 var4 var5 var6

var1 1.00 0.86 0.00 0.00 0.00 0.00

var2 0.86 1.00 0.90 0.00 0.43 0.00

var3 0.00 0.90 1.00 0.00 0.92 0.00

var4 0.00 0.00 0.00 1.00 0.55 0.00

var5 0.00 0.43 0.92 0.55 1.00 0.75

var6 0.00 0.00 0.00 0.00 0.75 1.00

Table 3  Mutual information quantity matrix of anomalous data

var1 var2 var3 var4 var5 var6

var1 1.00 0.86 0.00 0.00 0.00 0.00

var2 0.85 1.00 0.80 0.00 0.31 0.00

var3 0.00 0.80 1.00 0.00 0.82 0.00

var4 0.00 0.00 0.00 1.00 0.66 0.00

var5 0.00 0.31 0.82 0.66 1.00 0.77

var6 0.00 0.00 0.00 0.00 0.77 1.00
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Then, the difference in the mutual information quantity 
between normal and anomalous data is calculated by Eq. (5):
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where Amic_normal(XN) represents normal data and Amic_anormal(XN) 
represents anomalous data.

Finally, a structural change graph is calculated from Eq. (6) 
and represented as in Fig. 9:
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Fig. 9  Typical structural change graph

With the difference threshold value given as Athreshold(XN) = 
0.05, the step function u is executed once and selects the 
relationship exceeding the threshold value to generate the 
structural change graph. Regarding the threshold value, a 
difference of 0.05 or more in the mutual information quantity is 
deemed significant based on the five percent level used for 
permutation tests and the additivity of information quantities11). 
Note that the structural change graph is undirected and 
expressed as a symmetric matrix.

3.5	 Factor	identification	graph
A factor identification graph is calculated from Eq. (7) and 
represented as in Fig. 10:
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Fig. 10  Factor identification graph

Eq. (7) uses an Hadamard product, which is an entry-wise 
matrix product.

This example shows that the factor is var2 and affects var3 
via fun-a, whereby var3, in turn, affects var5 via fun-b. The 
structural change graph is not represented as a factor 
identification graph because it exhibits changes in the 
relationships between var2 and var5 and between var4 and var5 
but shows no relationships found in the variable dependence 
graph.

4.	 Verification
This section presents the results of verifying the effectiveness of 
our proposed method using the experimental packaging machine 
shown in Subsection 2.1.

4.1	 Specifics	of	the	verification
Typical defects observed with packaging machines are 
packaging defects, the factor of which varies. To verify the 
effectiveness of our proposed method, we examined two types 
of packaging defects whose factors cannot be identified by the 
conventional method. Table 4 shows the outlines of the 
packaging defects tested here:
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Table 4  Outlines of packaging defect events

Defect event Outline Factor (relevant variable)

Packaging Defect 1
A  deformed  finger  led  to  a 
misaligned workpiece, resulting 
in a packaging defect.

Workpiece  position  error 
(Conveyor Shaft position)

Packaging Defect 2

The  rollers  of  the  film  feed 
shafts went out of parallel and 
caused  fi lm  meandering, 
resulting in a packaging defect.

Film  meandering  (Film 
feed shaft 1 velocity, Film 
feed shaft 2 velocity)

Packaging Defect 1 was a packaging defect event that 
resulted from a workpiece position error due to a deformation 
suffered by a finger for feeding out workpieces. Packaging 
Defect 2 was a packaging defect event caused by film 
meandering. The former and the latter had different factors. 
Then, Table 5 shows a list of collected data used for factor 
identification:

Table 5  Outlines of the collected data

Relevant servomotor Object variable Control data (unit)

Film Feed Shaft 1 FilmFeedMain
FilmFeedMain.Trq (%)
FilmFeedMain.Vel (mm/s)
FilmFeedMain.Pos (mm)

Film Feed Shaft 2 FilmFeedSub
FilmFeedSub.Trq (%)
FilmFeedSub.Vel (mm/s)
FilmFeedSub.Pos (mm)

Conveyor Shaft ProductFeed
ProductFeed.Trq (%)
ProductFeed.Vel (mm/s)
ProductFeed.Pos (mm)

Top Seal Shaft TopSeal
TopSeal.Trq (%)
TopSeal.Vel (mm/s)
TopSeal.Pos (mm)

Virtual Axis VirtualMaster N/A

This table correlates the object variables of the control 
program with the collected control data for the servomotors 
constituting parts of the packaging machine. A virtual axis for 
synchronous control is added to the object variables of the 
control program. The control data consist of torque (Trq), 
velocity (Vel), and position (Pos) values, the feedback values of 
the servo driver that controls the servomotors according to 
commands from the PLC. Note that each torque value is given 
as a ratio to the rated torque of 100%. Although each type of 
control data is in a unit different from the others, no 
normalization is required because the structural change graph 
presented in Subsection 3.4 was generated using the MIC.

4.2	 Verification	results
Fig. 11 shows a variable dependence graph generated by the 
method presented in Subsection 3.3:

Fig. 11  Variable dependence graph

Table 6 correlates the affecting and affected variables based 
on the variable dependence graph for each FB executed in each 
process:

In the center seal process, film feed shafts 1 and 2 affect each 
other, turning out to be in a circular relationship.

Then, Table 7 shows the mutual information quantity matrix 
calculated by the method presented in Subsection 3.4 for the 
control data for a product in a nondefective condition.

The FilmFeedMain, ProductFeed, TopSeal, and FilmFeedSub 
positions (Pos) all show high relationship scores (0.95 or more). 
These results are because the packaging machine synchronously 
controls these positions based on ProductFeed for workpiece 
conveyance. These results show that the FilmFeedMain, 
ProductFeed, TopSeal, and FilmFeedSub positions can all be 
consolidated into the ProductFeed position upstream in the 
variable dependence graph in Fig. 11.

Similarly, Table 8 shows the differences in the mutual 
information quantity matrix between the non-defective product 
and Packaging Defect 1 as calculated by the method presented 
in Subsection 3.4.

Fig. 12 shows a structural change graph generated with a 
threshold value of 0.32 based on these results. This graph has 
torques and other elements indicated on its edges for the 
convenience of merging with the variable dependence graph. 
Fig. 13 is a modified version of this graph with all its position 
information consolidated, as explained above, into ProductFeed.

Table 6  Effects on the variables sorted by process

Process FB Affecting variable Affected variable

Workpiece feed process FB_ProductFeeding VirtualMaster (Virtual Axis) ProductFeed (Conveyor Shaft)

Center seal process FB_FilmFeed VirtualMaster (Virtual Axis)
ProductFeed (Conveyor Shaft)
FilmFeedMain (Film Feed Shaft 1)
FilmFeedSub (Film Feed Shaft 2)

FilmFeedMain (Film Feed Shaft 1)
FilmFeedSub (Film Feed Shaft 2)

End seal process FB_RotaryKnife VirtualMaster (Virtual Axis)
ProductFeed (Conveyor Shaft)

TopSeal (Top Seal Shaft)
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Table 7  Mutual information quantity matrix generated from the non-defective product data

FilmFeedMain ProductFeed TopSeal FilmFeedSub

Trq Vel Pos Trq Vel Pos Trq Vel Pos Trq Vel Pos

FilmFeedMain Trq 0.99 0.42 0.07 0.03 0.03 0.07 0.04 0.08 0.07 0.03 0.03 0.07

Vel 0.42 0.99 0.04 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.03 0.04

Pos 0.07 0.04 0.99 0.07 0.03 0.96 0.61 0.90 0.96 0.10 0.05 0.96

ProductFeed Trq 0.03 0.03 0.07 1.00 0.41 0.08 0.05 0.05 0.07 0.03 0.03 0.07

Vel 0.03 0.03 0.03 0.41 1.00 0.04 0.04 0.03 0.04 0.03 0.03 0.03

Pos 0.07 0.04 0.96 0.08 0.04 1.00 0.60 0.92 0.99 0.11 0.04 0.96

TopSeal Trq 0.04 0.03 0.61 0.05 0.04 0.60 1.00 0.19 0.59 0.05 0.03 0.61

Vel 0.08 0.04 0.90 0.05 0.03 0.92 0.19 0.99 0.97 0.11 0.05 0.90

Pos 0.07 0.04 0.96 0.07 0.04 0.99 0.59 0.97 1.00 0.10 0.05 0.96

FilmFeedSub Trq 0.03 0.03 0.10 0.03 0.03 0.11 0.05 0.11 0.10 1.00 0.45 0.10

Vel 0.03 0.03 0.05 0.03 0.03 0.04 0.03 0.05 0.05 0.45 0.99 0.05

Pos 0.07 0.04 0.96 0.07 0.03 0.96 0.61 0.90 0.96 0.10 0.05 0.99

Table 8   Differences in the mutual information quantity matrix between the non-defective product 
and Packaging Defect 1

FilmFeedMain ProductFeed TopSeal FilmFeedSub

Trq Vel Pos Trq Vel Pos Trq Vel Pos Trq Vel Pos

FilmFeedMain Trq 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

Vel 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pos 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.37 0.12 0.00

ProductFeed Trq 0.00 0.00 0.02 0.00 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02

Vel 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pos 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.35 0.10 0.00

TopSeal Trq 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.07 0.02 0.00

Vel 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.20 0.07 0.01

Pos 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.36 0.11 0.01

FilmFeedSub Trq 0.02 0.00 0.37 0.01 0.00 0.35 0.07 0.20 0.36 0.00 0.15 0.36

Vel 0.00 0.00 0.12 0.01 0.00 0.10 0.02 0.07 0.11 0.15 0.00 0.11

Pos 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.36 0.11 0.00

Fig. 12  Structural change graph for Packaging Defect 1

Fig. 13   Structural change graph for Packaging Defect 1 after position information 
consolidation

Finally, Fig. 14 shows a factor identification graph generated 
by the method presented in Subsection 3.5.

Fig. 14  Factor identification graph for Packaging Defect 1

As a result, the position information of ProductFeed serving 
the workpiece feed process was identified as the cause and 
found consistent with the Conveyor Shaft position, the factor. 
Then, Fig. 15 shows a factor identification graph generated by 
the same method for Packaging Defect 2:
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Fig. 15  Factor identification graph for Packaging Defect 2

Two potential factors are assumed here: a ProductFeed 
position value affecting the FilmFeedMain/Sub velocity and a 
collapse of the FilmFeedMain/Sub velocity relationship. This 
defect factor is film meandering. The collapse of the velocity 
relationship between FilmFeedMain and FilmFeedSub, which 
are film feed shafts 1 and 2, is consistent with the factor. Table 
9 summarizes the factor identification results by our proposed 
method. This table adds the factor identification results by our 
proposed method and the conventional method to the defect 
types and factors shown in Table 4.

For Packaging Defect 1, our proposed method successfully 
identified the factor as intended. For Packaging Defect 2, it 
narrowed down potential factors to two. For the conventional 
method, Table 9 shows the top three feature quantities 
calculated based on RandomForest importance values and the 
importance values of the feature quantities corresponding to the 
true factor similarly to Subsection 2.3. The feature quantities 
identified by the conventional method showed higher 
importance values than that of the true factor and turned out to 
be unsuitable for factor identification.

4.3 Discussion
This subsection discusses the respective validity of the mutual 
information quantity matrix and factor identification for 
configuring the variable dependency and structural change 
graphs. The variable dependence graph has successfully 

extracted the intended process information and represented the 
relationships among variables. The mutual information quantity 
matrix generated exclusively from the non-defective product 
data clearly represents the synchronous control of the 
servomotor position, suggesting that the obtained results are 
highly plausible from a control perspective.

Our proposed method correctly identified the position 
information of the conveyor shaft, which serves as the 
workpiece feed process, as the factor for Packaging Defect 1. 
For Packaging Defect 2, our proposed method narrowed down 
potential factors to two: the position information of the 
conveyor shaft and the velocity relationship between film feed 
shafts 1 and 2. Unlike the conventional method, which showed 
a tendency to identify factors in the downstream process, our 
proposed method identified a true factor, suggesting its 
effectiveness in factor identification.

On the other hand, however, our proposed method failed to 
identify down to a single factor for Packaging Defect 2 and 
picked the conveyor shaft position. A possible cause may be that 
this method focuses on data relationships and accordingly ends 
up extracting both halves of an edge when a change occurs only 
in either half. Moving forward, we need to consider making 
improvements, such as adding the importance values of feature 
quantities to data relationships.

One more point to add is that while we applied our proposed 
method to a relatively small-scale system consisting of four 
servomotors, large-scale systems consisting of around 100 
servomotors would also come into the scope of application of 
our proposed method to production lines. Our proposed method 
can generate factor identification graphs for large-scale systems. 
However, its application to a system with around more than 20 
servomotors would result in a complicated factor identification 
graph, posing an interpretability issue. This point will be 
addressed in the future.

5. Conclusions
Aiming to identify defect factors on shop floors in the FA field, 

Table 9  Factor identification results by our proposed method

Defect type Factor Factor identification results by our 
proposed method Factor identification results by the conventional method Importance

Packaging Defect 1 Workpiece position error
(Conveyor shaft position)

Conveyor shaft position Film feed shaft 2 torque (standard deviation) 0.154
Film feed shaft 2 velocity (max) 0.137
Top Seal Shaft torque (min) 0.081

Conveyor shaft position (standard deviation) 0.007

Packaging Defect 2 Film meandering
(Film feed shaft 1 velocity, 
film feed shaft 2 velocity)

Conveyor shaft position
Collapse of velocity  relationship between 
film feed shafts 1 and 2

Film feed shaft 1 torque (mean) 0.169
Top seal shaft torque (min) 0.123
Top seal shaft velocity (min) 0.120

Film feed shaft 1 velocity (mean) 0.016
Film feed shaft 2 velocity (mean) 0.031
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we proposed applying a program slicing technique to the 
problem with data of low independence due to multiple 
synchronized processes, extracting knowledge information from 
a PLC control program containing multi-processing and 
synchronous control information, and integrating the extracted 
knowledge information into data analysis. In an effectiveness 
verification test using an experimental packaging machine, we 
demonstrated the effectiveness of our proposed method in 
identifying factors unidentifiable by the conventional method. 
Besides, our proposed method extracts knowledge information 
from the PLC control program and can be implemented without 
checking the real program, thereby reducing the man-hours 
needed for factor analysis.

Regarding the future prospects for our proposed method, we 
will work on its issues with data relationship accuracy 
improvement and applicability to large-scale systems and would 
also like to expand its scope of applicability by adapting the 
targeted control program to PLCs of other makes or extracting 
knowledge information from design documents and other 
sources other than the program.
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