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The replacement of human work with AI has been promoted in recent years because the labor shortage in the 
manufacturing industry has become remarkable1). In particular, anomaly detection by AI image inspection has 
come to be used. On the other hand, image inspection cannot detect abnormalities, such as insufficient axial force, 
in screw tightening due to the lack of difference in appearance. In this paper, we propose a method to detect 
screw tightening bottoming defects in real time as similar workers feel the difference during tightening by using 
the data collected from the AC servo system during the operation. Anomalies should be detected in real time, at 
least until the next work is started to reduce unnecessary processes in the factory. To achieve that, our proposed 
method uses Omron’s AI machine automation controller2-5). Experimental results show our proposed method is 
effective even for 0.04 mm bottom-touch defects, which are difficult to detect by conventional methods.

1.	 Introduction
In recent years, a massive labor shortage has been felt across the 
manufacturing industry and further exacerbated due to the 
COVID-19 pandemic. Accordingly, AI technologies have been 
introduced worldwide to perform formerly human-dependent 
tasks. Among well-known cases of successfully applied AI 
technologies is image recognition, which is also used in the 
manufacturing industry for visual inspection1).

Image recognition can detect various defects, including 
omitted, ill-soldered, scratched, or contaminated parts. However, 
some defects are difficult to detect. A typical example is 
insufficient axial forces in screw tightening. An axial force 
clamps an object to be fastened between the a male screw seat 
and a joint. Its failure to meet the required value results in a 
screw-tightening defect. Insufficient axial forces in screw 
tightening are hard to detect accurately by image-based 
inspection. It is also difficult to subsequently make a 
nondestructive measurement of the axial force.

Skilled workers could rely on the feel of tightening to tell to 
some extent whether the tightening into a joint is normal. This 
method, however, would result in human-dependent quality 
variations.

A robot-based automated screw-tightening process capable of 

sensing differences in the feel would solve labor shortages and 
reduce human-dependent quality variations. The problem is, 
however, how to replace this anomaly detection method with an 
AI-based solution. Proposals based on conventional methods 
have been made, such as using the torque value for screw turn 
control6-8) but can only detect limited types of defect modes. No 
established technology exists yet for our purpose.

We propose a method of detecting screw-tightening defects in 
the automatic screw-tightening unit with its programmable logic 
controller (hereinafter “PLC”) without using externally installed 
devices, such as sensors. For the AI technology engine, we 
adopted an AI controller2-5) available in OMRONʼs product 
lineup. Test results are presented below to demonstrate that our 
proposed method is effective for bottom-touch defects that are 
particularly hard to detect.

2.	 Screw-tightening unit and screw-tightening 
defects

2.1 Configuration of the screw-tightening unit
Fig. 1 shows the configuration of a typical automatic screw-
tightening unit assumed here. The main components are as 
follows:

• Screw-tightening control function block (hereinafter 
“screw-tightening control FB”): a PLC program for screw-
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tightening control
• Human-machine interface (hereinafter HMI): a display unit 

for setting up the screw-tightening action
• PLC: a control unit that performs screw-tightening control 

via the screw-tightening control FB
• AC servo system: a servo mechanism that constitutes the 

up-down axis (Z-axis) and the rotation axis (R-axis), which 
follow commands from the PLC

• Mechanical mechanism: a mechanism that automates the 
screw-tightening operation using the screw-tightening 
action (rotating action) and the screw push-hold action 
(descending action) via the AC servo system.

2.2	 Screw-tightening control
This subsection explains the screw-tightening control using the 
screw-tightening control FB.

The screw-tightening control FB uses the screw-tightening 
control steps in Fig. 2 to perform screw-tightening control.

• Step 0 (Descend): Position the Z-axis on the workpiece.
• Step 1 (Seat temporarily): Turn the R-axis to tighten the 

screw to the target temporary-tightening torque (until the 
male screw is seated).

• Step 2 (Fasten fully): Turn the R-axis to tighten the screw to 

Fig. 2  Screw-tightening control steps

(a) Nomenclatural definitions

(b) Defective modes of screw tightening

Fig. 3  Definitions of defective modes of screw tightening

Fig. 1  System configuration for the screw-tightening unit
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the target full-tightening torque.
• Step 3 (Hold final fastening): Retain the R-axis at the target 

full-tightening torque.
• Step 4 (Release): Release the R-axis torque.
• Step 5 (Return to the original position): Return the Z-axis to 

the origin.

2.3	 Screw-tightening defects
A screw-tightening anomaly is a condition in which the axial 
force is insufficient due to incomplete screw tightening.

Their causes fall largely into eight types. Fig. 3 and Table 1 
show the definitions and descriptions of the eight defective 
modes of screw tightening:

Table 1  Descriptions of defective modes of screw tightening

Defective mode Descriptions Conventional 
detection method

(1) Screw thread 
defect

A defect involving a screw used with 
uncut or clogged threads. R-axis rotation load

(2) Contamination

A defect involving solder or other 
foreign matter trapped between a 
male screw seat and an object to be 
fastened.

R-axis rotation load

(3) Oblique 
tightening

A defect involving a male screw 
obliquely tightened into the female 
threads.

R-axis position

(4) Male/female 
screw damaged

A defect involving a screw used with 
stripped threads. Z-axis position

(5) Cam-out/
ream-out

A defect involving a male screw with 
a damaged cross recess, from which 
the driver bit slips out.

Z-axis position

(6) Tightening 
position 
displacement

A defect involving a male screw with 
its center misaligned to that of the 
female threads.

Z-axis position

(7) No screw
A defect involving failure to hold a 
male screw on the driver bit due to 
feeding/suction failure.

Z-axis velocity

(8) Bottom-touch 
defect

A defect involving a male screw tip 
coming into contact with the 
bottom of the female threads.

Large lift Z-axis 
position

Small lift N/A

2.4	 Challenges to screw-tightening defect detection
All the defective modes of screw tightening listed in Subsection 
2.3, other than bottom-touch, can be detected by conventional 
threshold determination based on Z- and R-axis position and 
velocity data collected from the servos6-8) as shown in Table 1.

However, no established method exists for detecting bottom-
touch defects with slight lifting after screw tightening. The 
reason is that such bottom-touch defects occur, which cause no 
torque differences with no visible anomalies, such as foreign 
matter, during screw tightening, and slight lifting is difficult to 
detect visually with accuracy. We propose a method of detecting 
bottom-touch defects with slight lifting.

3.	 Our proposed method
We propose a determination system based on machine learning 
using an AI controller to detect in real-time bottom-touch 
defects with slight lifting and other anomalies difficult to detect 
by conventional threshold determination. The AI controller can 
perform AI processing on the order of microseconds. Using data 
collected from the AC servo system during a screw-tightening 
action by the screw-tightening unit, the AI controller can extract 
feature quantities and detect a screw-tightening defect during 
the time from the end of the current screw-tightening action to 
the beginning of the next.

3.1	 System configuration
Our proposed system is expanded from the configuration in Fig. 
1 with the addition of the following extra components as shown 
in Fig. 4:

• AI controller: a PLC featuring a real-time anomaly detection 
function based on Isolation Forest9), an outlier detection 
algorithm for machine learning

• Screw-tightening quality estimation function block 
(hereinafter “screw-tightening quality estimation FB”): a 
PLC program for determining screw-tightening anomalies 
from data collected from the AC servo system based on an 
AI machine learning model

• AI machine learning model: a machine learning model built 
by the Isolation Forest algorithm from learning data 
collected in the past

Fig. 4  System configuration of our proposed method
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3.2	 Development of the AI machine learning model
The AI machine learning model is intended to tell apart 
properly and improperly tightened screws. This model is built 
based on data collected by the procedure given below. Isolation 
Forest, which we used to build the AI machine learning model, 
is an unsupervised learning algorithm.

(1) Learning data collection
Position, velocity, and torque data at the time of screw 
tightening are collected as learning data, respectively, from the 
R- and Z-axis servos controlled by the AI controller of the 
screw-tightening unit. Incidentally, our machine learning 
method uses normal data only as the learning data for building 
the learning model.

(2) Feature quantity calculation
The feature quantities of each step (minimum, maximum, mean, 
range, standard deviation, and time) are calculated from the 
collected data. The range in the sense here is a value defined as 
|maximum value － minimum value|. As shown in Fig. 5, the 
total number of feature quantities is calculated as the number of 
steps times the number of data items times the number of types 
of feature quantities.

(3) Feature quantity selection
The total number of feature quantities is a huge number 
obtained as the number of steps times the number of data items 
times the number of types of feature quantities. Screening is 
required to narrow down all the available feature quantities to 
those useful for detecting target defects limited in number. We 
performed feature quantity selection using decision tree 
analysis9-10) and logistic regression analysis9-10), the same 
methods as in Reference (5). The feature quantity selection here 
is data analysis method-dependent; hence, the feature quantities 

thus selected may be physically inconsistent. Therefore, selected 
feature quantities must be evaluated for adequacy from physical 
points of view.

(4) Creation of the AI machine learning model
The data of selected feature quantities are used for the Isolation 
Forest algorithm to build a tree structure as an AI machine 
learning model.

(5) Evaluation
AI scores indicating the degrees of anomaly calculated based on 
the built AI machine learning model are evaluated for adequacy 
against newly collected normal and anomalous data.

4.	 Test results
4.1 Screw-tightening unit used for the test
Fig. 6 and Table 2 show the configuration and main components 
for the screw-tightening unit used for the test.

Fig. 6  Configuration of the screw-tightening unit

Fig. 5  Calculation of feature quantities associated with screw tightening
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4.2	 Workpiece used for the test
The male screw adopted was a 25 mm long M4 SEMS screw. 
The joint was made of ADC12, while the object to be fastened 
was a glass epoxy substrate. Their dimensions are shown in Fig. 
7. Incidentally, this workpiece was selected as a typical 
combination from the screwable products available from the 
co-creation development partner for the present technology.

4.3	 Learning data collection
We collected 300 pieces of normal data. Referring to Reference 
(9), we set appropriate data quantities for the Isolation Forest. 
Our machine-learning method generates a learning model from 
normal data only. We divided the 300 pieces of normal data into 
three random 100-piece sets, out of which we picked two 100-
piece sets for use as learning data.

4.4	 Reference data collection
Measured data for tightening axial force were collected as the 
reference data for evaluating later the machine learning model 
for adequacy. Axial force measurement methods include load 

cell-based methods, such as the one used for our test, and 
destructive inspections. Neither method allows data acquisition 
in real product manufacturing environments. Accordingly, the 
reference data must be collected beforehand using a testing 
workpiece.

To collect reference data, we placed a load cell between the 
object to be fastened and the joint to measure the axial force. 
The next subsection compares the axial force measurement data 
with the estimation results by the learning model.

4.5	 Evaluation data collection
We collected 100 pieces of bottom-touch defect data as 
evaluation data. Of the normal data explained in Subsection 4.3, 
the 100-piece set of data having not been used as learning data 
was also used for the evaluation.

To reproduce the defective mode of bottom-touch as shown 
in Fig. 8, we used A5056 aluminum alloy set screws similar in 
material to the joint (ADC12) to assemble two types of joints 
for bottom-touch testing (0.2 mm and 0.5 mm bottom-touch 
defects), 50 pieces per type. The joints for the bottom-touch test 

Table 2  Main components for the screw-tightening unit

No. Product name Model Qty Remarks

1 AC Servo System 1S Series AC Servo Driver (100 V, 100 W) R88D-1SN01L-ECT 2 R/Z-axis

2 AC Servo System 1S Series AC Servomotor (100 W, without brake) R88M-1M10030S-S2 1 R-axis

3 AC Servo System 1S Series AC Servomotor (100 W, with brake) R88M-1M10030S-BS2 1 Z-axis

4 Screw-Tightening Unit
Reduction gear AB042-003-S2-P2 1 R-axis

Single-axis robot KR30H06B-0220-0-10A0 1 Z-axis

5 AI-equipped machine automation controller NY Series NY512-Z300 1 Controller

6 NA Series Programmable Terminal with Seven-Inch Wide Screen Size NA5-7W001S 1 HMI

(a) Joint (b) Object to be fastened

Fig. 7  Drawing of the workpiece
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were divided and used in two lots, Lot 1 (20 pieces) and Lot 2 
(30 pieces). These bottom-touch dimensions are values 
experimentally determined to reproduce bottom-touch defects 
with 0 to 0.2 mm lifting that are hard to detect by conventional 
methods.

Fig. 8  Joints for bottom-touch testing

Each 0.2 mm bottom-touch defect was obtained by 
positioning the top surface of the set screw 0.2 mm above the 
tip of a normally tightened male screw. The 0.5 mm bottom-
touch defects were obtained similarly by positioning the top 
surface of the set screw 0.5 mm above the tip of a normally 
tightened male screw. However, the bottom-touch defects thus 
obtained varied in dimensions. Hence, we measured the amount 
of gap occurring between the male screw seat and the object to 
be fastened after screw tightening.

4.6	 Feature quantity calculation and feature quantity 
selection

Using the obtained learning/evaluation data, we calculated the 

feature quantities mentioned in 3.2(2) to perform feature 
quantity selection by the data analysis method described in 
3.2(3). As a result, two feature quantities, the Z-axis position 
range in Step 2 and the R-axis position range in Step 4, were 
selected. Fig. 9 shows the learning/evaluation data distribution 
for the maximum values of the Z-axis position in Step 2 and the 
R-axis position in Step 4 and that for the Z-axis position range 
in Step 2 and the R-axis position range in Step 4. Outside the 
data plotting area is shown the density curve for each 
distribution.

Regarding the R- and Z-axis position-based anomaly 
detection by the conventional method, the normal-data 
distribution indistinguishably overlaps the 0.2 mm bottom-touch 
defect data distribution as shown in the left pane of Fig. 9. 
Besides, the distribution of 0.5 mm bottom-touch defect data 
varies depending on the lot. Meanwhile, regarding the R- and 
Z-axis position range-based anomaly detection shown in the 
right pane, the normal-data distribution shows small variations 
and appears different from that of 0.2 mm bottom-touch defect 
data. The distribution of 0.5 mm bottom-touch defect data does 
not vary depending on the lot. These results are probably 
because the R- and Z-axis position ranges are relative values 
and remain unaffected, unlike the R- and Z-axis positions, 
which are absolute values and affected by variations due to such 
factors as differences in male screw length or joint height and 
individual differences between the lots.

The feature quantity selection was performed by a data 
analysis method. Hence, the physical consistency of feature 
quantities selected by the data analysis method is checked.

Fig. 9  Distributions of the maximum values and ranges of the Z-axis position in Step 2 and the R-axis position in Step 4
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(1)  Z-axis position at the occurrence of a bottom-touch 
defect

Fig. 10 shows the time-series plot for screw tightening 
performed normally and that for screw tightening performed 
with a 0.50 mm bottom-touch defect.

Fig. 10(a) shows the changes in the Z-axis positions during 
the entire screw-tightening procedure (Steps 0 to 5). The blue 
and red plots represent a single piece of normal-case data and 
that of bottom-touch defect-case data, respectively. The cases of 
screw-tightening action shown here in Fig. 10(a) appear to 
exhibit differences in the duration of Step 5. The differences are 
due to some steps with an operating time variable depending on 
the screw-tightening condition in progress. However, this time 

variation does not necessarily occur due to a screw-tightening 
defect and hence does not serve well as a discriminant. Fig. 
10(b) is an enlarged view of Step 2 involving feature quantity 
selection.

These two pieces of data appear to exhibit differences in the 
Z-axis position between the normal and bottom-touch defect 
cases. However, as shown in Fig. 9, no significant differences 
can be seen in the overall distribution.

In the case of normal screw tightening, the screw became 
seated at Step 2 (full tightening), with the Z-axis position 
remaining nearly unchanged. In the case of screw tightening 
with a bottom-touch defect, however, a larger amount of change 
in the Z-axis position (range) occurred than in normal screw 

(a) Changes in the Z-axis positions during screw-tightening action

(b) Z-axis positions in Step 2

Fig. 10  Differences in the Z-axis position between a normal case and a bottom-touch defect case
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tightening, probably because the tip of the male screw or the 
bottom of the female threads became deformed due to the 
torque increase at Step 2.

(2)	 R-axis position at the occurrence of a bottom-touch defect
Fig. 11 shows the time-series plot of the R-axis position for a 

normal case and that for a bottom-touch defect case.
Fig. 11(a) shows the changes in the R-axis position during 

the entire screw-tightening procedure (Steps 0 to 5). The blue 
and red plots represent a single piece of normal-case data and 
that of bottom-touch defect-case data, respectively, revealing 
almost no differences in the changes in the R-axis positions. 
Fig. 11(b) is an enlarged view of Step 4 involving feature 
quantity selection. These two pieces of data appear to exhibit 
differences in R-axis absolute value between the normal and 

bottom-touch defect cases. However, as shown in Fig. 9, no 
significant differences can be seen in the overall distribution. 
Before the release of the R-axis torque at Step 4, the full 
tightening torque was applied via the driver bit in the turning 
direction of the male screw. The release of the R-axis torque in 
this condition resulted in a force working to undo the torsion of 
the male screw. The likely cause is that the screw with its head 
unseated because of a bottom-touch defect was free of rotational 
resistance and exhibited a larger amount of detorsion (more 
reverse turning of the screw) than in the normal case (with the 
screw head seated). To support the above inference, we 
confirmed that with the R-axis torque set to 0% at Step 4, a 
properly tightened screw showed no turning of its head, 
whereas an improperly tightened one with a bottom-touch 
defect showed some turning of its head.

(a) Changes in the R-axis positions during screw tightening

Fig. 11  Differences in the R-axis position between a normal case and a bottom-touch defect case

(b) R-axis positions during Step 4
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4.7	 Development of the AI machine learning model
We built an AI machine learning model by loading the AI 
controller with the learning data for the feature quantities 
selected in Subsection 4.6 (no training data included because the 
algorithm is an unsupervised learning one). The AI controller 
can automatically build an Isolation Forest model. The screw-
tightening quality estimation FB built in the AI controller 
computes feature quantities specified by the data obtained from 
the R- and Z-axis servos controlled by the screw-tightening unit 
controller so that the machine learning function of the AI 
controller applies the feature quantities to the AI machine 
learning model to determine the AI scores.

4.8	 Evaluation
We compared the Isolation Forest AI scores calculated by the AI 
controller with screw-tightening axial force values, the reference 
data obtained in Subsection 4.4. Fig. 12 shows the verification 
results for 300 pieces of normal data divided into three random 
100-piece sets with 200 pieces of normal data used as learning 
data and the remaining 100 pieces of normal data used together 
with 100 pieces of bottom-touch defect data as evaluation data.

The horizontal axis represents the axial force. The vertical 
axis represents the AI score calculated by the AI controller. The 
AI score becomes greater with a greater deviation from the 

Fig. 12  AI scores for the normal case and the bottom-touch defect case

normal-data distribution. The blue color represents the normal 
data, while the colors other than blue represent the bottom-
touch defect data. Two types of joints were prepared for the 
bottom-touch test, one with a 0.2 mm defect and the other with 
a 0.5 mm defect. However, the actual bottom-touch defects 
varied in dimensions. Therefore, we measured the amount of 
gap occurring between the seat of each male screw head and 
object to be fastened after screw tightening. The results are 
shown classified in (i) less than 0.01 mm, (ii) 0.01 mm or more 
to less than 0.04 mm, (iii) 0.04 mm or more to less than 0.2 
mm, and (iv) 0.2 mm or more. It is clear from the results that 
the axial force was high in the normal data while low in the 
bottom-touch defect data.

The normal data have low AI scores, and the bottom-touch 
defect data have high AI scores, revealing a correlation between 
the AI score and the axial force.

With a gap amount of 0.04 mm or more, the AI scores for 
normalities and anomalies are clearly separate. With data with 
smaller gap amounts, axial force values and variations tend to 
be greater, along with lower AI scores. Some bottom-touch 
defect data have axial force values closer to the normal data. 
Consequently, the AI scores for normalities and anomalies are 
distributed close to each other and may result in a misjudgment. 
A misjudgment can be either a false negative judgment, in other 
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words, finding an anomaly as a normality or a false positive 
judgment, such as finding a normality as an anomaly, depending 
on the threshold value setting.

For our test, we set threshold values to the criterion of zero 
false negatives and evaluated their adequacy by the false 
positive rate. Fig. 12 shows the above results relative to red 
dashed lines representing the threshold values set to ensure a 
zero false negative rate. Table 3 shows the resulting false 
positive rates.

Table 3  False positive rates in bottom-touch defect detection

Verification False positive rate (%)

Pattern A 0.00

Pattern B 0.00

Pattern C 1.00

Patterns A and B showed zero false positives with their 
threshold values defined by the AI scores of approximately 0.54 
and 0.56, respectively. Both patterns showed a complete 
separation of normalities and anomalies with a false positive 
rate of 0.00%. Pattern C showed one false positive point with 
the threshold value defined by the AI score of approximately 
0.53 and, hence, a false positive rate of 1.00%.

The above evaluation results show that our method 
significantly reduced false positive rates for the datasets used 
here. In contrast, the conventional method ended up with 
normal data and bottom-touch defect data distributed 
indistinguishably overlapping, as explained in Subsection 4.6.

5.	 Conclusions
This paper presented a method of detecting anomalies in the 
automatic screw-tightening unit by an AI controller performing 
real-time on-site AI processing. We performed a test on bottom-
touch defects with slight lifting and evaluated the effectiveness 
of our method based on the test results. Our proposed method 
successfully discriminated bottom-touch defects with less than 
0.04 mm gap amounts hard to discriminate by conventional 
methods, albeit with a false positive rate of 1%. We showed that 
our method can discriminate 0.04 mm or greater gap amounts 
with a misjudgment rate of 0%. Because of their paucity of 
visual differences, insufficient axial forces in screw tightening 
have been a challenge to image-based inspection. Our proposed 
method uses AC servo data during screw tightening and can 
detect in real-time anomalies that are hard to identify by visual 
inspection. An automatic screw-tightening unit built-in with our 
method would enable manpower-saving and improve screw-
tightening quality simultaneously.

Our test used a dedicated screw-tightening unit. We plan to 
fuse our method with robotic assembly applications and explore 

the possibility of applying it to improve the quality of screw 
tightening by general-purpose robots. This technology has come 
into being as a co-creation with our in-house factory. An 
application able to detect the eight different defective modes of 
screw tightening listed in Table 1, including bottom-touch 
defects discussed above, has already been developed and 
introduced into our production line. Highly evaluated on the 
shop floor, this technology is scheduled to replace the current 
inspection processes reliant on visual and other conventional 
inspection methods.

For further deployment to customers, our method needs to be 
checked for normality-anomaly distinction during mechanical/
screw-tightening control and under screw-tightening conditions. 
Also required is identifying variable factors affecting anomaly 
detection, such as workpiece dimensions, shape and material, 
equipment wear/deterioration, and the posture of the screw 
during tightening. We intend to solve these challenges through 
deployment to external customers.
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