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In the product assembly process, there is the work of supplying parts randomly stacked in a container to an 
automated machine. This is called bin picking. In response to the recent shortage of labor at manufacturing sites 
and the increase in labor costs, automation of this work is required. By realizing bin picking using 3D sensors and 
industrial robots, it is possible to manufacture a wide variety of products using the same system, and it is possible 
to reduce the cost and time of the start-up of the production line. At this time, in order to realize the same speed 
as a human, it is important to have a technology that can recognize the position and posture of a part in a three-
dimensional space with high speed and high accuracy. In this paper, we propose a three-dimensional object 
position and posture recognition technology consisting of a coarse search and fine alignment. In the coarse search, 
the rough position and posture of the object are estimated at high speed using the PCOF-MOD feature and 
equilibrium posture search tree. In the fine alignment, high-precision positional and posture estimation is realized 
by optimizing the three-dimensional space and the two-dimensional space using a depth image and an RGB 
image. When the proposed method was evaluated, it was confirmed that the estimation accuracy of the position 
and posture was improved by about twice compared with the conventional method. In addition, it was confirmed 
that the recognition time using the proposed method was 146.2 ms on average on a computer equipped with an 
Intel® Core i7-7700 CPU @ 3.60 GHz, and both speed and accuracy were compatible.

1. Introduction
In recent years, manufacturing floors have suffered increasingly 
serious labor shortages and labor cost surges. Automating 
human-dependent processes, including assembly, inspection, and 
material handling, has become a pressing issue. For the parts 
feeding processes during product assembly, an example of an 
automated method of parts feeding is to use a dedicated parts-
feeding machine called a parts feeder. However, parts feeders 
are custom-built machines designed for dedicated use for 
specific parts. Accordingly, these machines must be designed as 
required by the number of part types, posing the challenge of 
increased production line start-up costs and person-hours. 
Another challenge is that part feeders cannot handle large-sized 
or easily damageable parts and are more limited in the range of 
manageable parts. Thus, needs exist for automating so-called 
bin-picking tasks for feeding randomly piled parts of different 
shapes in containers into automatic machinery. These challenges 
will be solved if bin picking can be implemented based on 3D 
sensors and industrial robots.

A typical flow of processes to implement bin picking goes as 
follows:

(1) Capturing an RGB-D image of a part through a 3D sensor
(2) Matching this image with a 3D CAD-generated model of 

the part for position-and-posture recognition thereof
(3) Calculating a robot hand position matching the 

recognition results to ensure the safe grip of the part
(4) Moving the robot to the calculated position to grip the 

part.

Of these processes, those assigned to a 3D sensor and an image 
processing controller are (1) to (3). Step (2), object position-and-
posture recognition, is particularly important to implement bin 
picking on a manufacturing floor with human-equivalent 
performance. In this paper, we propose a high-speed, high-
accuracy 3D object position-and-posture recognition technology.

2. Related Works
Three-dimensional object position-and-posture recognition is 

a technology that estimates the 3D-spatial positions and 
postures (six parameters of translational Tx, Ty, and Tz and 
rotational Rx, Ry, and Rz) of parts as viewed from a 3D sensor 
(Fig. 1). The methods proposed before for 3D object position-
and-posture recognition fall largely into either 3D point cloud-
based methods1-5) or 2D projection image-based methods6-14).
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Fig. 1 Parameters calculated in 3D object position-and-posture recognition

2.1 3D Point Cloud-based Method
A 3D point cloud-based method matches 3D CAD or otherwise 
generated models of parts with input data to search positions 
and postures for high consistency between models and input 
data. Well-known model generation methods include the 
following: spin-images1), which describe positional relationships 
with surrounding point clouds; FPFH2) and SHOT3), which use 
normal-direction histograms of point clouds around key points; 
and PPF4,5), which describes two-point relationships. It has been 
pointed out that these methods have a slow processing speed 
and exhibit low robustness with an object against a complex 
background6).

2.2 2D Projection Image-based Method
A 2D projection image-based method uses multi-perspective 
RGB and depth images of an object to extract its feature 
quantity values and creates their templates beforehand for 
matching with newly measured images to estimate the position 
and posture of the object. Variations of this method include ones 
that combine local template matching and the Hough 
Transform7-9) and ones that use templates of whole parts to scan 
inside images6,10,11). The problem with the former is that they are 
time-consuming to process most-frequent-value searches from a 
six-dimensional voting space. The latter methods involve 
template creation and scanning for objects with variable 
appearances due to posture changes, and hence their problem is 
that the processing time increases linearly relative to the number 
of object types or image resolution. On the other hand, studies 
have demonstrated that high-speed position-and-posture 
recognition can be achieved using quantized feature quantity-
based tools, such as LINEMOD12), PCOF13), or PCOF-MOD14). 
PCOF-MOD, in particular, is a feature quantity-based tool using 
the contour and surface information of parts and has been 
shown to achieve a higher recognition rate than its 
alternatives14).

Besides, studies have been conducted to train binary 
classifiers for object/background distinction to enhance their 

robustness against complex backgrounds15,16). However, 
background data collection for each object of interest or each 
image-capture environment is extremely laborious. Therefore, 
preferably, models should be created, including templates 
necessary for object recognition, from 3D CAD models of 
objects alone.

Based on the above points, we use a template matching-
based method as a user-friendly, fast, and accurate 3D object 
position-and-posture recognition method applicable to real 
applications on manufacturing floors.

3. 3D Object Position-and-Posture Recognition 
Method

To implement 3D object position-and-posture recognition, which 
is both fast and accurate, this study considers a method 
consisting of a coarse-to-fine search capability to fast search an 
approximate position of an object and a fine alignment capability 
for better estimation accuracy. The method adopted here for 
coarse-to-fine search uses PCOF-MOD (Multimodal 
Perspectively Cumulated Orientation Feature) feature quantities 
and BPT (Balanced Pose Tree) from the viewpoint of high-speed 
processing and recognition rate. For fine alignment, we propose 
an alignment technique that uses both depth images and RGB 
images to achieve high position-and-posture estimation accuracy 
for simple-shape parts encountered on manufacturing floors.

3.1 Coarse-to-Fine Search
In a coarse-to-fine search, a PCOF-MOD feature quantity-based 
template undergoes a matching process that uses BPT14) to 
calculate an objectʼs approximate position and posture at high 
speed.

For an object variable in appearance due to pose changes, a 
PCOF-MOD feature quantity strikes a balance between the 
objectʼs acceptable variability in appearance and its robustness 
against complex backgrounds. In template creation, depth 
images of an object changing its pose are used to extract the 
depth gradient vector representing the objectʼs contour feature 
and the normal direction vector representing the objectʼs surface 
feature. Then, gradient-direction and normal-direction 
histograms are generated on a pixel-by-pixel basis. For the 
histograms for each pixel, only the direction at or above the 
frequency threshold is selected to extract an eight-digit binary 
number with its corresponding bit set to 1 as a PCOF-MOD 
feature quantity value (Fig. 2).

BPT is a search tree consisting of a hierarchy of templates 
with different resolutions and is configured to make the depths 
in the hierarchy and the numbers of templates for child nodes 
linked to parent nodes as uniform as possible to keep the search 
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efficiency uniform between templates. In a matching process, a 
BPTʼs parent node template is applied to the tier with the 
lowest resolution in the image pyramid to scan images and 
detect candidates. Then, for coordinates with identified 
candidates, the image pyramid resolution is raised for detailed 
iterative matching using the child node template to calculate the 
objectʼs on-image position at high speed (Fig. 3).

Finally, the correspondence relationship between the three-
dimensional coordinates on the 3D CAD model of the object 
and the two-dimensional coordinates on its input images is used 
to solve the PnP problem17) to estimate the approximate position 
and posture of the object.

 (a) Depth gradient vector direction (b) Normal vector direction

(c) orientation histograms and binary features

Fig. 2 PCOF-MOD feature quantity value extraction

Fig. 3 Search using BPT

3.2 Fine Alignment
A position-and-posture estimation made by a coarse-to-fine 
search is based on 2D projection images and may have low 
accuracy for the depth-direction position (Tz) and gradient (Rx, 
Ry) that do not show well in changes on the image plane. 
Accordingly, fine alignment is performed to achieve better 
position-and-posture estimation accuracy.

Typically, 3D spatial alignment is performed by applying an 
ICP (Iterative Closest Point) algorithm18) to 3D CAD-generated 
point clouds and measurement point clouds obtained from depth 
images. Suppose, however, that simple shape parts consisting of 
flat surfaces (e.g., the holder in Fig. 7) are randomly piled and 
in a posture that only allows partial visual access to its surfaces. 
In this case, an ICP algorithm dependent only on depth images 
will have difficulty estimating the amounts of translation (Tx, Ty) 
and rotation (Rz) corresponding to changes on the image plane 
and have the problem of reduced position-and-posture 
estimation accuracy. Many simple shape parts encountered on 
manufacturing floors consist mainly of flat surfaces similar to 
this holder. Therefore, this subsection proposes a fine alignment 
method that achieves high position-and-posture estimation 
accuracy even when only flat surfaces are visible.

RGB-D images used for alignment operations have the 
following characteristics: RGB images provide high estimation 
accuracy for the position (Tx, Ty) and rotation (Rx) on the image 
plane. In contrast, depth images give high estimation accuracy 
for the position (Tz) and gradient (Rx, Ry) in the depth direction. 
Hence, the method proposed herein uses the former and the 
latter complementarily to achieve better position-and-posture 
estimation accuracy.

Fig. 4 shows the flow of a fine alignment process using a 
depth image and an RGB image. This flow aims to perform 
alignment in 3D and 2D spaces, respectively, and merge their 
estimation results in the end. First, the position and posture 
obtained by coarse-to-fine search, the point clouds on the 3D 
CAD model generated beforehand during template creation, and 
the measurement point clouds on the depth image are used as 
inputs for the ICP algorithm to perform alignment in 3D space. 
Next, a silhouette image is created of an image-plane projection 
of the 3D CAD model based on the position and posture 
calculated by ICP in 3D space. The image thus obtained 
undergoes edge extraction by a Sobel filter to calculate feature 
points along the contour (Fig. 5). Then, an image obtained by 
similar edge extraction from the RGB image has its feature 
points superposed on those in the silhouette image to search the 
RGB image for edge features close to the feature points to 
calculate the correspondence relationship between the feature 
points. Based on this correspondence relationship, ICP is 
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performed in 2D space to estimate the translational tx and ty and 
the rotational θ on the image plane and solve the PnP problem, 
thereby determining an optimized set of Tx, Ty, and Rz on the 
image plane. Finally, these Tx, Ty, and Rz replace their 
counterparts in the position and posture calculated by ICP in 3D 
space, optimizing the position and posture in 3D and 2D spaces.

Fig. 4  Flow chart of fine alignment

 (a) 3D CAD (b) Silhouette image (c) Feature points along 
   the contour

Fig. 5 Feature point extraction for ICP in 2D space

4. Evaluation Experiments
Assuming a gripping task for an industrial robot on the 

manufacturing floor, a position-and-posture estimation accuracy 
evaluation (Experiment 1) based on linearity evaluation datasets 
was performed, followed by a recognition rate/processing time 
evaluation (Experiment 2) based on randomly piled parts 
datasets to verify the effectiveness of the proposed method. A 
prototype of the Omron-developed 3D sensor Model 
FH-SMDA-GS050B (Fig. 6) was used to capture grayscale and 
depth images for the datasets. The processing time was 
measured using a computer with an Intel(R) Core i7-7700 CPU 
@3.60GHz.

Fig. 6 3D vision sensor Model FH-SMDA-GS050B

4.1 Experiment 1 Position-and-Posture Estimation Accuracy 
Evaluation

Experiment 1 evaluated the proposed method regarding static 
repeatability and linearity accuracy to evaluate its effectiveness 
for position-and-posture estimation accuracy. The datasets used 
for static repeatability evaluation were obtained as follows: the 
3D sensor was kept in a fixed position relative to three different 
types of parts consisting of flat and curved surfaces (Fig. 7). 
Then, the posture with the 3D sensor facing opposite each part 
was used as the reference for three postures (no gradient, 
Y-axial gradient only, and X- and Y-axial gradients) to capture 
50 serial measurement data images.

 (a) Depth image (b) RGB image
From top to down, pipe, nut, and holder

Fig. 7 Typical images from Experiment 1
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For the six parameters of estimated positions and postures, 
standard deviations were calculated to evaluate the position and 
posture of the part for shifts.

The image capture method used to obtain the datasets for 
linearity evaluation was as follows: each part was placed on the 
X-stage and moved by a predetermined distance for each 
measurement. Three different 3D sensor poses and two part-
moving directions (laterally and diagonally across images) were 
used to capture 100 measurement data images of each part, with 
its position shifted in 2-mm increments per shot.

The linearity evaluation proceeded as follows: the estimated 
positions and postures served as the basis for calculating the 
distances from the 3D sensorʼs origin to the eight vertices of 
thecircumscribed cube of each part and the inter-data 
differences between the eight verticesʼ shifts and the stageʼs 
shift to evaluate the position-and-posture estimation results 
regarding linearity.

A performance comparison was made between the proposed 
method and the conventional method14), which performs fine 
alignment using depth images exclusively after coarse-to-fine 
search using PCOF-MOD feature quantity values and BPT. 
Tables 1 and 2 show the static repeatability evaluation results, 
while Table 3 shows the linearity evaluation results. Fig. 8 
shows typical recognition result images obtained by the 
conventional and proposed methods. The evaluations reveal that 
the alignment accuracy was improved approximately twice on 
average compared with that achieved with the conventional 
method. The proposed method showed significant improvement 
effects, especially when applied to three-dimensional geometric 
feature-poor parts, such as nuts or holders, with only some of 
their flat surfaces visible from certain viewpoints. The 
alignment result images in Fig. 8 confirm that the proposed 
method improved the translational or rotational shifts in the 
image plane direction observed with the conventional method.

Table 1 Position standard deviations of the static repeatability datasets [mm]

Part Conventional method Proposed method

Pipe 0.028 0.023

Nut 0.207 0.065

Holder 0.116 0.064

Average 0.117 0.051

Table 2 Pose standard deviations of the static repeatability datasets [deg]

Part Conventional method Proposed method

Pipe 0.027 0.036

Nut 0.386 0.239

Holder 0.101 0.067

Average 0.171 0.114

Table 3  Difference averages of the linearity datasets [mm]

Part Conventional method Proposed method

Pipe 0.054 0.074

Nut 0.687 0.164

Holder 0.712 0.250

Average 0.485 0.162

 (a) Conventional method (b) Proposed method
From top to down, pipe, nut, and holder

Fig. 8 Fine alignment results

4.2 Experiment 2 Recognition Performance Evaluation
In Experiment 2, to verify that fine alignment using the 
proposed method would not result in a significantly reduced 
recognition rate or processing speed, datasets were created for 
six different types of parts containing flat and curved surfaces 
and randomly piled in containers (Fig. 9) to evaluate the 
recognition rate and the processing time. The datasets were 
obtained by capturing 20 measurement data images per part 
type while changing the randomly piled conditions of the parts. 
For the exposed parts on top of the random pile in each data 
image, visually obtained initial position-and-posture input and 
ICP-based alignment were combined to calculate the true 
position and posture values for the dataset. Each image shows 
five to ten parts lying exposed on the top of the pile. Parts 
subject to recognition were those with a hidden surface area 
accounting for 15% or less of their whole area. The evaluation 
sample size per part type ranged from 100 to 200 
approximately.
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 (a) Depth images (b) RGB images with recognition results 
  achieved by the proposed method

From top to bottom, pipes, rings, links, nuts, metal sheets, and holders

Fig. 9 Typical images from Experiment 2

The proposed method was compared with two alternative 
methods. One was the conventional method14), which performs 
fine alignment using depth images exclusively after coarse-to-
fine search using PCOF-MOD feature quantity values and BPT. 
The other was a method based on PPF (Point-Pair Feature) and 
Hough Transform4), which creates model data necessary for 
position-and-posture recognition, using exclusively 3D CAD, 
similar to the proposed method. The PPF implementation used 
was the surface-based matching function included in the 
HALCON13 commercial machine vision library. The target 
recognition range was limited to the inside of the container 
(approximately 700×400 pixels per image). Regarding 

recognition performance evaluation, precision, recall, and 
F-score values were calculated based on the absolute error 
values between the estimated and true position and posture 
values. Considering that true-value entry to the random-pile 
datasets was manually performed, the reference thresholds for 
successful recognition were defined as 5 mm or less for 
translation and 7.5° or less for the rotational angle. For each part 
type and all part types combined, Table 4 shows the average 
F-scores, while Table 5 shows the average processing times.

Table 4 Recognition rates [F-scores] for the random-pile datasets

Part PPF Conventional method Proposed method

Pipe 0.825 0.942 0.946

Ring 0.754 0.977 0.967

Link 0.355 0.915 0.908

Nut 0.819 0.981 0.981

Metal sheet 0.572 0.888 0.879

Holder 0.908 0.989 0.989

Average 0.706 0.949 0.945

Table 5 Processing times [ms] for the random-pile datasets

Part PPF Conventional method Proposed method

Pipe 1423.9 92.1 112.2

Ring 1736.2 106.0 129.1

Link 1066.2 186.6 204.2

Nut 1883.4 118.1 134.9

Metal sheet 2376.7 171.0 192.1

Holder  591.8 97.5 104.7

Average 1513.0 128.5 146.2

The evaluation results show that the proposed method 
matches the recognition rate of the conventional method. 
Regarding the processing time, the conventional method is 
approximately 18 ms slower than the proposed method, which 
remains within a practically acceptable range, considering that a 
difference of several tens of ms does not matter in a bin-picking 
application.

5. Conclusions
In this paper, we proposed a 3D-spatial position-and-posture 
estimation method for various parts to achieve automated parts 
feeding on manufacturing floors. PCOF-MOD feature quantity 
values and BPT were used for coarse-to-fine searches to 
perform high-speed estimation of the approximate positions and 
postures of the objects. For fine alignment, depth and RGB 
images were used in pairs to achieve high estimation accuracy. 
Evaluation datasets were developed to evaluate the performance 
of the proposed method. The proposed method showed 
approximately twice better position-and-posture estimation 
accuracy than the conventional method.
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Future work in position-and-posture recognition may include 
such improvements as additional feature quantities to enable 
parts picking, with parts identification included, from a 
randomly piled heap of similar parts in similar shapes but with 
subtle differences in some geometric details.
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