
HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

Contact : HIGUCHI Toshiyuki toshiyuki.higuchi@omron.com

Development of Highly Reliable Safety 
System with Enhanced Tolerance  
against Soft-Error
HIGUCHI Toshiyuki

We report on the development of a highly reliable safety system that ensures that the equipment continues to 
operate while maintaining safety functions without making emergency stops due to system errors caused by soft 
errors. As semiconductor devices become more highly integrated and miniaturized, transient bit errors (soft errors) 
in memory are a problem. If the data stored in semiconductor memory is temporarily modified due to a soft error, 
a short time breakdown or system downtime may occur. In equipment that operates 24 hours a day and handles 
expensive materials in a semiconductor manufacturing factory, temporary stoppage can cause excessive profit 
loss.

On the other hand, Safety PLCs (Programmable logic controller), which are often used in semiconductor 
manufacturing equipment, perform self-diagnosis on all semiconductor integrated circuits and memory circuits 
related to safety control, and immediately stop the equipment when an abnormal operation is detected. Even if 
data is garbled due to a soft error, the safety PLC will stop the equipment. Therefore, there is a need for measures 
to maintain productivity while maintaining safety functions and suppressing unnecessary outages. In response to 
this issue, we have realized the technique with not only the function of detecting random hardware failures that 
impair safety and maintaining the safety state but also with the function of detecting data corruption due to soft 
errors and recovering data. This paper describes the specific measures for the function of recovering data by 
detecting data corruption due to the soft error, and the verification results of the effect.

1.	 Introduction
Various types of safety PLCs (programmable logic controllers) 
have been adopted for establishing safety systems aimed at the 
protection of human bodies from the machinery and equipment 
in the factories. The safety PLC is the control unit for safety 
control that has acquired a certification in accordance with 
international safety standards as represented by IEC 615081). 
Since safety PLCs are used to ensure the safety of workers, they 
must not operate in such a way that a dangerous condition of 
the machine or equipment cannot be detected because of a 
failure of the safety PLC itself and judging it as safe and 
allowing the machine to operate. For this reason, safety PLCs 
are equipped with redundancy and diversity in hardware and 
software, always self-diagnosing the safety control-related 
components and implemented with the ability to stop machine 
and equipment on the safe side if a random hardware failure 
that impairs safety is detected. Those have greatly enhanced the 
safety and reliability compared to the ordinary PLCs.

Safety PLCs make it possible to realize more flexible safety 
systems in large and sophisticated applications through the 
adoption of software safety circuits and reduced wiring by 
safety networks. For this reason, semiconductor devices that can 
process large capacity programs at high speed are implemented 
in a safety PLC. The safety PLC performs a self-diagnosis on 
all safety control-related semiconductor integrated circuits and 
memory circuits and controls the equipment to perform an 
immediate stop if an abnormal operation is detected.

With the increasing high integration and miniaturization of 
semiconductor devices in recent years, transient bit errors (soft 
errors) in memory have been spotlighted. Soft errors occur, for 
example, by α particles, cosmic rays, or neutron collisions. In 
addition, data corruption induced by fine foreign objects and the 
corruption induced by noise that is sporadically generated by 
input/output control devices with noise from the outside have 
become problems as well. These soft errors can cause a 
temporary system malfunction or system downtime by 
temporarily rewriting the data stored in semiconductor memory. 
In facilities that operate 24 hours a day and handle expensive 
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materials, such as semiconductor manufacturing plants, even 
such a temporary system shutdown can cause an excessive loss 
of profit; consequently, a countermeasure is in demand.

It is generally known that the diagnostics for detecting bit 
flips caused by a soft error and the repair of data with bit flips 
can be realized by using Error Correction Codes (hereinafter 
referred to as “ECC”). However, in order to apply such a 
countermeasure using ECC functions to a safety PLC, it will 
lead to higher cost because it is necessary to change to memory 
or the MPU with a special built-in hardware to generate and 
check ECC. In addition, because the device is changed, the 
failure analysis and safety evaluation of the safety PLC must be 
conducted again, and separate hardware development and 
evaluation per model will be necessary.

Hence, we worked on the development of a safety PLC 
seeking enhanced soft-error tolerance through software 
countermeasures only. Implementing of a software 
countermeasure is advantageous with no increase in cost 
because they do not require additional hardware circuits, and 
ease of spreading for existing safety PLCs and other safety 
components.

2.	 Challenges in Software Countermeasures
Many existing safety components, including safety PLCs, have 
made the MPUs redundant. As a measure for detecting the data 
corruption, we adopt a method to check data between MPUs as 
shown in Fig. 1. But, the current situation is, while an abnormal 
state of the MPU, including data corruption, is detected through 
the comparison of data, the repair of data corruption is not 
performed yet.

Fig. 1  Data Check between MPUs

Hence, a conventional technology is suggested as an example 
to have triple replicated variable data in each MPU and check 
them. Checking with triple replicated data is expected to be 
highly effective as a means of detecting data corruption and 
further repairing the data. However, checking the variable data 
by triple replication requires the variable data to be defined in 
the program in advance, and it implies the presence of risk 
where the only temporarily used data such as those in the stack 

area cannot be protected. In addition, since the checking with 
triple replication is performed when reading/writing the variable 
data, the interval of checking will be longer for the infrequently 
accessed variable data, as a result, there is a possibility that data 
corruption may occur on multiple variable datasets and are not 
repaired.

3. Countermeasure
For handling the aforementioned issues, the following three 
software countermeasures were investigated to realize a function 
to detect data corruption in each MPU and repair it.

(1) Triple replication of variable data
(2) Protection of stack area
(3) Prevention of error accumulation by cyclic testing

3.1	 Triple Replication of Variable Data
In the program source code, variables are defined as the storage 
areas for the reading/writing of data handled in memory. The C 
language is known as one of the typical programming 
languages; we used the C++ language for this development. For 
Static and Auto variables that are declared as variables in the 
C++ language, we decided to declare and treat them as 
redundant variables in the program. Then, a majority decision 
was made before a relevant variable was used in the arithmetic 
process. This provided the detection of data corruption in 
variables and the repairing of data. The details of data triple 
replication process are shown in Fig. 2.

Fig. 2  Variable Data Replication Processing into Three Sets

The match of none of the three datasets is regarded as an 
error. Fig. 3 shows the details of the majority voting process.
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Fig. 3  Triple Replication Process for Variables

3.2 Protection of Stack Area
A processor that uses memory to execute arithmetic processing 
has built-in registers. Registers are used for calculations and for 
the use of pointing to a specific address in memory. The stack 
area is provided in memory to temporarily store the register 
data. When a function process (subroutine) occurs during the 
execution of the main routine of a program, a stack operation is 
performed to interrupt the main routine. There are two stack 
operation processes as follows:

(1) The operation to temporarily evacuate the data stored in 
the processorʼs built-in registers to the stack area of 
RAM (random access memory) at the start of subroutine 
processing (push operation).

(2) Operation to return the data evacuated in the stack area to 
the register at the end of subroutine processing (pop 
operation).

Soft errors can occur in the stack area where data is 
temporarily evacuated by the stack operation as well. The codes 
for stack operations associated with the subroutine processing 
are automatically generated by the compiler. For this reason, 
when a general-purpose compiler is used, the variable data 
triple replication process described in paragraph 3.1 is not 
applicable to the stack operation.

For this reason, it was decided to make the data redundant by 
creating a replication of data saved in the stack area in RAM in 
the beginning of the subroutine process and to check the 
redundant data in the end of the subroutine process.

The details of the triple replication process of the stack area 
are shown in Figs. 4 and 5. The majority voting process to 

check the triple replicated data is the same as the method shown 
in Fig. 4.

–  In the functionEntry process of funcY, the stack pointer 
before the call out of funcY (=prevSP) and the stack 
pointer after the call out of funcY (=nowSP) are compared, 
and a copy of the increased data is created in RAM.

–  Immediately before terminating the execution of funcY, a 
majority decision is carried out using the data increased by 
the functionExit process and the copied data.

Fig. 4  Reading Out the Stack Pointer

Fig. 5  Triple Replication of Stack

3.3	 Prevention of Error Accumulation by Cyclic Testing
In the triple replication process of variable data described in 
paragraph 3.1, the data stored at the address corresponding to 
the readout are repaired when a variable is read out by the 
program execution. However, the frequency of the readout of a 
variable depends on the program. For variables that are read out 
more frequently, there are more opportunities for the data to be 
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repaired. However, for variables that are infrequently read out, 
there are fewer opportunities for the data to be repaired, and the 
accumulation of errors can cause a soft error on multiple 
addresses among the addresses of the triple replicated variables 
in RAM.

Hence, apart from the execution of tasks, such as the 
arithmetic processes carried out during the processing of the 
main routine or subroutine, we decided to establish a dummy 
processing section and execute a dummy process to read out the 
variable at every predetermined cycle.

Fig. 6 shows the task execution section, dummy processing 
section, and read/write processing section. The first through 
third addresses of the read/write processing section indicate the 
main memory addresses; the first address indicates the original 
variable data, and the second and third addresses indicate the 
copied variable data.

Fig. 6	 Task Execution Section, Dummy Processing Section, Read/Write Processing 
Section

Fig. 7 shows an example of repaired data corruption by the 
dummy processing section.

In spite of the low occurrence frequency of tasks that use 
variable A1, the dummy processes are executed at every regular 
cycle. Consequently, even if data corruption occurs before the 
next task that uses variable A1, the data will be repaired, and 
the accumulation of errors is prevented.

Fig. 7  Repaired data corruption by the dummy processing section

4.	 Validation
In order to validate the effectiveness of the aforementioned 
three measures to prevent data corruption-triple replication of 
variable data, protection of stack area, and prevention of error 
accumulation by cyclic testing, it is necessary to generate soft 
errors and measure the degree of repair of memory in which the 
data corruption occurred and the occurrence and frequency of 
system abnormalities. Hence, the following two methods were 
adopted for validation. These allowed us to accelerate the soft 
error evaluation in a short period of time:

–  Evaluation by pseudo soft error processing
–  Evaluation by α-ray irradiation test

4.1	 Evaluation Through Pseudo Soft Error Processing
A pseudo-soft error processing evaluation is performed by 
implementing a software batch process that generates pseudo-bit 
corruption in a program. The bit corruptions were exhaustively 
generated over the entire RAM area, and the evaluation method 
and configuration were studied in such a way that the location 
where the bit corruption that occurred could be identified when 
a system error occurred.
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Fig. 8 shows the evaluation configuration using the pseudo 
soft error processing. Using the following procedure, the 
location information of the bit corruption and the abnormality 
information are mutually indexed and stored in the database:

(1) Using a personal computer, specify the position of a 
single bit where the bit corruption is generated in main 
memory of the safety PLC.

(2) Invert a single data bit at a specified position in main 
memory by software batch processing in a safety PLC. 
Collect abnormality information regarding an 
abnormality that occurred within a specified time after 
reversing a single data bit.

(3) The personal computer acquires the abnormality 
information from the safety PLC.

(4) The personal computer registers the location information 
on the location specified in (1) and the abnormality 
information acquired in (3) and mutually indexed in the 
database.

Fig. 8  Evaluation Configuration for Pseudo Soft Error Processing

Table 1 shows an example list of location information and 
abnormality information registered in the database. By referring 
to the database, it is easy to analyze the cause when a system 
abnormality occurs and to check the impact of the occurrence of 
a software error.

Table 1  Location Information and Abnormality Information Database

No. Address Bit  
Position

Variable  
Name

Abnormality  
ID

Source Code (File 
Name, Line number)

1 0x200010AC 1 val_A 30 file_A.c, 867

2 0x20006000 7 val_B 57 file_B.c, 620

3 0x20007032 3 val_C 42 file_C.c, 500

4 0x20009A00 4 stuck 30 file_B.c, 827

⋮ ⋮ ⋮ ⋮ ⋮

N 0x20002000 5 val_X 77 file_A.c, 712

Table 2 shows the evaluation results of the pseudo soft error 
process. Using identical hardware, a running test was conducted 
by implementing a software batch process that generates pseudo 
bit corruption in both the software before and after 
implementing the software error countermeasure. As a result, 
the system abnormality occurrence rate ratio of the unit 
implemented with the soft error countermeasure to the unit 
before the countermeasure was 0.00082.

Table 2  System Abnormality Frequency

Unit Before 
Countermeasure

Unit After Soft 
Error Countermeasure

a. Bit corruption frequency 77,465 times 289,636 times

b. System abnormality frequency 1,630 times 5 times

c. System abnormality ratio (b/a) 0.021041 0.000017

d. �System abnormality rate before/
after countermeasure 1 0.00082

4.2	 Evaluation by α-Ray Irradiation Test
JEDEC JESD892) specifies the following three soft error 
evaluation tests.

JESD89-1:  Field Test (Test Method for Real-Time Soft Error 
Rate)

JESD89-2:  Alpha (α) Ray Irradiation Test Using Radioactive 
Substances (Test Method for Alpha Source 
Accelerated Soft Error Rate)

JESD89-3:  Neutron Irradiation Test Using Accelerator (Test 
Method for Beam Accelerated Soft Error Rate)

Field tests are costly and time consuming because they 
require a large number of evaluation samples over a long period 
of time. Neutron irradiation tests using accelerators are not easy 
to perform because of the limited number of facilities that can 
facilitate neutron irradiation. On the other hand, α-ray 
irradiation tests using radioactive substances are conducted in a 
short time if a source is available. This time, in order to confirm 
the effect of software countermeasures at an early stage by 
actually generating software errors, we referred to the α-ray 
irradiation test, which provided a simple acceleration test.

Figs. 9 and 10 show the test configuration. An MPU 
implemented with memory was directly irradiated by an α-ray 
source, and the behavior of the product was observed.

–  With an MPU mounted in a product, open the MPU 
package surface and expose the IC chip inside.

–  Place the 241Am (americium), an α-ray source, on the top 
surface of an IC chip.

–  Operate the product and observe the behavior. Measure the 

5



frequency and time of occurrence of any system 
abnormality.

Fig. 9  α-Ray Irradiation Test Configuration

Before installation of the α-ray After installation of the α-ray

Fig. 10  Configuration of Pseudo Soft Error Processing Evaluation

Table 3 shows the α-ray irradiation test results for an existing 
unit and a unit implemented with the soft error countermeasure. 
As a result, the system abnormality occurrence rate ratio of the 
unit implemented with the soft error countermeasure with regard 
to the existing unit was 0.0012.

Table 3  System Abnormality Frequency (Distance from α-ray source: 21 mm)

Existing Unit Unit After Software 
Countermeasure

a. Cumulative irradiation time 76 min 13,000 min

b. System abnormality frequency 5 times 1 time

c. System abnormality interval (b/a) 15.2 min 13,000 min

d. �System abnormality ratio before/after 
countermeasure 1 0.0012

For more information, the system error rate ratios are 
different between the evaluation by pseudo soft error processing 
and the evaluation by the α-ray irradiation test. The possible 
reason for this is the inability to carry out the comparison tests 
for the units used for a test on an identical hardware because the 
surface seal of the MPU package of the unit implemented with 
the software is opened for testing. In addition, since the flow 
rate (number of α-particles) of α-rays emitted from the 
americium varies depending on the distance between the 

americium and the MPU, the α-ray flow rate depends on the 
precision of the jig that secures the α-ray source. Since the test 
was conducted with a simple attachment method this time, it is 
possible that the comparison was not conducted with an equal 
α-ray flow rate. These are the future issues that need to be 
addressed in the evaluation of soft errors.

5.	 Conclusions
This time, we worked on the development of a safety PLC that 
enhances the resistance to soft errors by simply changing the 
software without any addition of hardware.

We confirmed that the three software measures-triple 
replication of variable data, protection of stack area, and 
prevention of error accumulation by cyclic testing-could, 
through a pseudo soft error evaluation that exhaustively 
generates soft errors in memory, reduce the system error 
occurrence rate to 0.0009 or less compared to that before the 
countermeasures. In addition, through α-ray irradiation tests, we 
could confirm the continuous operation of the system while 
repairing bit corruption even in an environment where actual 
radiation is generated. Through the use of this technology, we 
are expecting an improvement in the frequency of system 
downtime due to soft error to approximately 1/1,000.

This time, the safety PLC was targeted, but since software 
measures are used, it will be easy to spread and apply to other 
safety components. In addition to realizing the functions as a 
safety component, such as detecting random hardware failures 
that impair the safety required by the international safety 
standards and maintaining a safe state, by utilizing this 
technology, the function to detect data corruption caused by soft 
errors and to further repair the data will be realized with the 
software. And, it will be possible to build up a highly reliable 
safety system that will operate continuously without system 
abnormalities caused by bit corruption.

The future challenges are the reduction in processing time for 
monitoring and repairing data corruption and the high speed. 
This technology is expected to have a similar effect on 
applications dealing with the network devices that handle large 
capacity memory, where the impact of soft errors is a concern. 
We will continue the consideration simultaneously with the 
issues of speeding up the response time of the entire safety 
system, including the network. Furthermore, we would like to 
contribute to improved productivity through the creation of 
highly reliable safety systems that keep the equipment 
continuously operating while maintaining the safety functions.
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