
HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

Contact : HIGUCHI Toshiyuki toshiyuki.higuchi@omron.com

Development of Highly Reliable Safety
System with Enhanced Tolerance
against Soft-Error
HIGUCHI Toshiyuki

We report on the development of a highly reliable safety system that ensures that the equipment continues to
operate while maintaining safety functions without making emergency stops due to system errors caused by soft
errors. As semiconductor devices become more highly integrated and miniaturized, transient bit errors (soft errors)
in memory are a problem. If the data stored in semiconductor memory is temporarily modified due to a soft error,
a short time breakdown or system downtime may occur. In equipment that operates 24 hours a day and handles
expensive materials in a semiconductor manufacturing factory, temporary stoppage can cause excessive profit
loss.

On the other hand, Safety PLCs (Programmable logic controller), which are often used in semiconductor
manufacturing equipment, perform self-diagnosis on all semiconductor integrated circuits and memory circuits
related to safety control, and immediately stop the equipment when an abnormal operation is detected. Even if
data is garbled due to a soft error, the safety PLC will stop the equipment. Therefore, there is a need for measures
to maintain productivity while maintaining safety functions and suppressing unnecessary outages. In response to
this issue, we have realized the technique with not only the function of detecting random hardware failures that
impair safety and maintaining the safety state but also with the function of detecting data corruption due to soft
errors and recovering data. This paper describes the specific measures for the function of recovering data by
detecting data corruption due to the soft error, and the verification results of the effect.

1.	 Introduction
Various types of safety PLCs (programmable logic controllers)
have been adopted for establishing safety systems aimed at the
protection of human bodies from the machinery and equipment
in the factories. The safety PLC is the control unit for safety
control that has acquired a certification in accordance with
international safety standards as represented by IEC 615081).
Since safety PLCs are used to ensure the safety of workers, they
must not operate in such a way that a dangerous condition of
the machine or equipment cannot be detected because of a
failure of the safety PLC itself and judging it as safe and
allowing the machine to operate. For this reason, safety PLCs
are equipped with redundancy and diversity in hardware and
software, always self-diagnosing the safety control-related
components and implemented with the ability to stop machine
and equipment on the safe side if a random hardware failure
that impairs safety is detected. Those have greatly enhanced the
safety and reliability compared to the ordinary PLCs.

Safety PLCs make it possible to realize more flexible safety
systems in large and sophisticated applications through the
adoption of software safety circuits and reduced wiring by
safety networks. For this reason, semiconductor devices that can
process large capacity programs at high speed are implemented
in a safety PLC. The safety PLC performs a self-diagnosis on
all safety control-related semiconductor integrated circuits and
memory circuits and controls the equipment to perform an
immediate stop if an abnormal operation is detected.

With the increasing high integration and miniaturization of
semiconductor devices in recent years, transient bit errors (soft
errors) in memory have been spotlighted. Soft errors occur, for
example, by α particles, cosmic rays, or neutron collisions. In
addition, data corruption induced by fine foreign objects and the
corruption induced by noise that is sporadically generated by
input/output control devices with noise from the outside have
become problems as well. These soft errors can cause a
temporary system malfunction or system downtime by
temporarily rewriting the data stored in semiconductor memory.
In facilities that operate 24 hours a day and handle expensive

1

OMRON TECHNICS Vol.54.002EN 2021.12

materials, such as semiconductor manufacturing plants, even
such a temporary system shutdown can cause an excessive loss
of profit; consequently, a countermeasure is in demand.

It is generally known that the diagnostics for detecting bit
flips caused by a soft error and the repair of data with bit flips
can be realized by using Error Correction Codes (hereinafter
referred to as “ECC”). However, in order to apply such a
countermeasure using ECC functions to a safety PLC, it will
lead to higher cost because it is necessary to change to memory
or the MPU with a special built-in hardware to generate and
check ECC. In addition, because the device is changed, the
failure analysis and safety evaluation of the safety PLC must be
conducted again, and separate hardware development and
evaluation per model will be necessary.

Hence, we worked on the development of a safety PLC
seeking enhanced soft-error tolerance through software
countermeasures only. Implementing of a software
countermeasure is advantageous with no increase in cost
because they do not require additional hardware circuits, and
ease of spreading for existing safety PLCs and other safety
components.

2.	 Challenges in Software Countermeasures
Many existing safety components, including safety PLCs, have
made the MPUs redundant. As a measure for detecting the data
corruption, we adopt a method to check data between MPUs as
shown in Fig. 1. But, the current situation is, while an abnormal
state of the MPU, including data corruption, is detected through
the comparison of data, the repair of data corruption is not
performed yet.

Fig. 1  Data Check between MPUs

Hence, a conventional technology is suggested as an example
to have triple replicated variable data in each MPU and check
them. Checking with triple replicated data is expected to be
highly effective as a means of detecting data corruption and
further repairing the data. However, checking the variable data
by triple replication requires the variable data to be defined in
the program in advance, and it implies the presence of risk
where the only temporarily used data such as those in the stack

area cannot be protected. In addition, since the checking with
triple replication is performed when reading/writing the variable
data, the interval of checking will be longer for the infrequently
accessed variable data, as a result, there is a possibility that data
corruption may occur on multiple variable datasets and are not
repaired.

3. Countermeasure
For handling the aforementioned issues, the following three
software countermeasures were investigated to realize a function
to detect data corruption in each MPU and repair it.

(1) Triple replication of variable data
(2) Protection of stack area
(3) Prevention of error accumulation by cyclic testing

3.1	 Triple Replication of Variable Data
In the program source code, variables are defined as the storage
areas for the reading/writing of data handled in memory. The C
language is known as one of the typical programming
languages; we used the C++ language for this development. For
Static and Auto variables that are declared as variables in the
C++ language, we decided to declare and treat them as
redundant variables in the program. Then, a majority decision
was made before a relevant variable was used in the arithmetic
process. This provided the detection of data corruption in
variables and the repairing of data. The details of data triple
replication process are shown in Fig. 2.

Fig. 2  Variable Data Replication Processing into Three Sets

The match of none of the three datasets is regarded as an
error. Fig. 3 shows the details of the majority voting process.

HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

2

HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

Fig. 3  Triple Replication Process for Variables

3.2 Protection of Stack Area
A processor that uses memory to execute arithmetic processing
has built-in registers. Registers are used for calculations and for
the use of pointing to a specific address in memory. The stack
area is provided in memory to temporarily store the register
data. When a function process (subroutine) occurs during the
execution of the main routine of a program, a stack operation is
performed to interrupt the main routine. There are two stack
operation processes as follows:

(1) The operation to temporarily evacuate the data stored in
the processorʼs built-in registers to the stack area of
RAM (random access memory) at the start of subroutine
processing (push operation).

(2) Operation to return the data evacuated in the stack area to
the register at the end of subroutine processing (pop
operation).

Soft errors can occur in the stack area where data is
temporarily evacuated by the stack operation as well. The codes
for stack operations associated with the subroutine processing
are automatically generated by the compiler. For this reason,
when a general-purpose compiler is used, the variable data
triple replication process described in paragraph 3.1 is not
applicable to the stack operation.

For this reason, it was decided to make the data redundant by
creating a replication of data saved in the stack area in RAM in
the beginning of the subroutine process and to check the
redundant data in the end of the subroutine process.

The details of the triple replication process of the stack area
are shown in Figs. 4 and 5. The majority voting process to

check the triple replicated data is the same as the method shown
in Fig. 4.

– In the functionEntry process of funcY, the stack pointer
before the call out of funcY (=prevSP) and the stack
pointer after the call out of funcY (=nowSP) are compared,
and a copy of the increased data is created in RAM.

– Immediately before terminating the execution of funcY, a
majority decision is carried out using the data increased by
the functionExit process and the copied data.

Fig. 4  Reading Out the Stack Pointer

Fig. 5  Triple Replication of Stack

3.3	 Prevention of Error Accumulation by Cyclic Testing
In the triple replication process of variable data described in
paragraph 3.1, the data stored at the address corresponding to
the readout are repaired when a variable is read out by the
program execution. However, the frequency of the readout of a
variable depends on the program. For variables that are read out
more frequently, there are more opportunities for the data to be

3

repaired. However, for variables that are infrequently read out,
there are fewer opportunities for the data to be repaired, and the
accumulation of errors can cause a soft error on multiple
addresses among the addresses of the triple replicated variables
in RAM.

Hence, apart from the execution of tasks, such as the
arithmetic processes carried out during the processing of the
main routine or subroutine, we decided to establish a dummy
processing section and execute a dummy process to read out the
variable at every predetermined cycle.

Fig. 6 shows the task execution section, dummy processing
section, and read/write processing section. The first through
third addresses of the read/write processing section indicate the
main memory addresses; the first address indicates the original
variable data, and the second and third addresses indicate the
copied variable data.

Fig. 6	 Task Execution Section, Dummy Processing Section, Read/Write Processing
Section

Fig. 7 shows an example of repaired data corruption by the
dummy processing section.

In spite of the low occurrence frequency of tasks that use
variable A1, the dummy processes are executed at every regular
cycle. Consequently, even if data corruption occurs before the
next task that uses variable A1, the data will be repaired, and
the accumulation of errors is prevented.

Fig. 7  Repaired data corruption by the dummy processing section

4.	 Validation
In order to validate the effectiveness of the aforementioned
three measures to prevent data corruption-triple replication of
variable data, protection of stack area, and prevention of error
accumulation by cyclic testing, it is necessary to generate soft
errors and measure the degree of repair of memory in which the
data corruption occurred and the occurrence and frequency of
system abnormalities. Hence, the following two methods were
adopted for validation. These allowed us to accelerate the soft
error evaluation in a short period of time:

– Evaluation by pseudo soft error processing
– Evaluation by α-ray irradiation test

4.1	 Evaluation Through Pseudo Soft Error Processing
A pseudo-soft error processing evaluation is performed by
implementing a software batch process that generates pseudo-bit
corruption in a program. The bit corruptions were exhaustively
generated over the entire RAM area, and the evaluation method
and configuration were studied in such a way that the location
where the bit corruption that occurred could be identified when
a system error occurred.

HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

4

HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

Fig. 8 shows the evaluation configuration using the pseudo
soft error processing. Using the following procedure, the
location information of the bit corruption and the abnormality
information are mutually indexed and stored in the database:

(1) Using a personal computer, specify the position of a
single bit where the bit corruption is generated in main
memory of the safety PLC.

(2) Invert a single data bit at a specified position in main
memory by software batch processing in a safety PLC.
Collect abnormality information regarding an
abnormality that occurred within a specified time after
reversing a single data bit.

(3) The personal computer acquires the abnormality
information from the safety PLC.

(4) The personal computer registers the location information
on the location specified in (1) and the abnormality
information acquired in (3) and mutually indexed in the
database.

Fig. 8  Evaluation Configuration for Pseudo Soft Error Processing

Table 1 shows an example list of location information and
abnormality information registered in the database. By referring
to the database, it is easy to analyze the cause when a system
abnormality occurs and to check the impact of the occurrence of
a software error.

Table 1  Location Information and Abnormality Information Database

No. Address Bit
Position

Variable
Name

Abnormality
ID

Source Code (File
Name, Line number)

1 0x200010AC 1 val_A 30 file_A.c, 867

2 0x20006000 7 val_B 57 file_B.c, 620

3 0x20007032 3 val_C 42 file_C.c, 500

4 0x20009A00 4 stuck 30 file_B.c, 827

⋮ ⋮ ⋮ ⋮ ⋮

N 0x20002000 5 val_X 77 file_A.c, 712

Table 2 shows the evaluation results of the pseudo soft error
process. Using identical hardware, a running test was conducted
by implementing a software batch process that generates pseudo
bit corruption in both the software before and after
implementing the software error countermeasure. As a result,
the system abnormality occurrence rate ratio of the unit
implemented with the soft error countermeasure to the unit
before the countermeasure was 0.00082.

Table 2  System Abnormality Frequency

Unit Before
Countermeasure

Unit After Soft
Error Countermeasure

a. Bit corruption frequency 77,465 times 289,636 times

b. System abnormality frequency 1,630 times 5 times

c. System abnormality ratio (b/a) 0.021041 0.000017

d. �System abnormality rate before/
after countermeasure 1 0.00082

4.2	 Evaluation by α-Ray Irradiation Test
JEDEC JESD892) specifies the following three soft error
evaluation tests.

JESD89-1: Field Test (Test Method for Real-Time Soft Error
Rate)

JESD89-2: Alpha (α) Ray Irradiation Test Using Radioactive
Substances (Test Method for Alpha Source
Accelerated Soft Error Rate)

JESD89-3: Neutron Irradiation Test Using Accelerator (Test
Method for Beam Accelerated Soft Error Rate)

Field tests are costly and time consuming because they
require a large number of evaluation samples over a long period
of time. Neutron irradiation tests using accelerators are not easy
to perform because of the limited number of facilities that can
facilitate neutron irradiation. On the other hand, α-ray
irradiation tests using radioactive substances are conducted in a
short time if a source is available. This time, in order to confirm
the effect of software countermeasures at an early stage by
actually generating software errors, we referred to the α-ray
irradiation test, which provided a simple acceleration test.

Figs. 9 and 10 show the test configuration. An MPU
implemented with memory was directly irradiated by an α-ray
source, and the behavior of the product was observed.

– With an MPU mounted in a product, open the MPU
package surface and expose the IC chip inside.

– Place the 241Am (americium), an α-ray source, on the top
surface of an IC chip.

– Operate the product and observe the behavior. Measure the

5

frequency and time of occurrence of any system
abnormality.

Fig. 9  α-Ray Irradiation Test Configuration

Before installation of the α-ray After installation of the α-ray

Fig. 10  Configuration of Pseudo Soft Error Processing Evaluation

Table 3 shows the α-ray irradiation test results for an existing
unit and a unit implemented with the soft error countermeasure.
As a result, the system abnormality occurrence rate ratio of the
unit implemented with the soft error countermeasure with regard
to the existing unit was 0.0012.

Table 3  System Abnormality Frequency (Distance from α-ray source: 21 mm)

Existing Unit Unit After Software
Countermeasure

a. Cumulative irradiation time 76 min 13,000 min

b. System abnormality frequency 5 times 1 time

c. System abnormality interval (b/a) 15.2 min 13,000 min

d. �System abnormality ratio before/after
countermeasure 1 0.0012

For more information, the system error rate ratios are
different between the evaluation by pseudo soft error processing
and the evaluation by the α-ray irradiation test. The possible
reason for this is the inability to carry out the comparison tests
for the units used for a test on an identical hardware because the
surface seal of the MPU package of the unit implemented with
the software is opened for testing. In addition, since the flow
rate (number of α-particles) of α-rays emitted from the
americium varies depending on the distance between the

americium and the MPU, the α-ray flow rate depends on the
precision of the jig that secures the α-ray source. Since the test
was conducted with a simple attachment method this time, it is
possible that the comparison was not conducted with an equal
α-ray flow rate. These are the future issues that need to be
addressed in the evaluation of soft errors.

5.	 Conclusions
This time, we worked on the development of a safety PLC that
enhances the resistance to soft errors by simply changing the
software without any addition of hardware.

We confirmed that the three software measures-triple
replication of variable data, protection of stack area, and
prevention of error accumulation by cyclic testing-could,
through a pseudo soft error evaluation that exhaustively
generates soft errors in memory, reduce the system error
occurrence rate to 0.0009 or less compared to that before the
countermeasures. In addition, through α-ray irradiation tests, we
could confirm the continuous operation of the system while
repairing bit corruption even in an environment where actual
radiation is generated. Through the use of this technology, we
are expecting an improvement in the frequency of system
downtime due to soft error to approximately 1/1,000.

This time, the safety PLC was targeted, but since software
measures are used, it will be easy to spread and apply to other
safety components. In addition to realizing the functions as a
safety component, such as detecting random hardware failures
that impair the safety required by the international safety
standards and maintaining a safe state, by utilizing this
technology, the function to detect data corruption caused by soft
errors and to further repair the data will be realized with the
software. And, it will be possible to build up a highly reliable
safety system that will operate continuously without system
abnormalities caused by bit corruption.

The future challenges are the reduction in processing time for
monitoring and repairing data corruption and the high speed.
This technology is expected to have a similar effect on
applications dealing with the network devices that handle large
capacity memory, where the impact of soft errors is a concern.
We will continue the consideration simultaneously with the
issues of speeding up the response time of the entire safety
system, including the network. Furthermore, we would like to
contribute to improved productivity through the creation of
highly reliable safety systems that keep the equipment
continuously operating while maintaining the safety functions.

HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

6

HIGUCHI Toshiyuki� Development of Highly Reliable Safety System with Enhanced Tolerance against Soft-Error

References
1) Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-Related Systems, IEC 61508, 2010.
2) Measurement and Reporting of Alpha Particle and Terrestrial Cosmic

Ray-Induced Soft Errors in Semiconductor Devices, JEDEC
JESD89, 2006.

About the Authors

HIGUCHI Toshiyuki
Development Dept., Safety Div.
Product Business Division H.Q.
Industrial Automation Company
Specialty:Safety Engineering, Software Engineering

The names of products in the text may be trademarks of each company.

7

