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In order to enable persons and robots to work in the same shared space at manufacturing sites, robot trajectory 
planning technologies have been developed for robots to avoid collisions with persons during operation. However, 
by conventional technologies, since the operation must be temporarily stopped before the robot performs collision 
avoidance, the robot frequently stops when it comes into close contact with a person, and productivity is 
significantly reduced.

In this research, as one of the technologies necessary to solve the above problem, we are working on an 
innovative technology for predicting the position of the human body in a few seconds in advance at the 
manufacturing site. This time, a novel method has been proposed by applying an AI-based human walking 
trajectory prediction technology to the prediction of the human body position at the manufacturing site, and 
performance has been evaluated using one case at the manufacturing site. As a result, the proposed method is able 
to predict the body position 4 seconds in advance in a processing time of 0.4 ms, and a technical issue has also 
been identified. In addition, comparative evaluation experiments revealed that this method has better prediction 
accuracy and a processing speed more than 10 times faster than the orthodox time series analysis method.

1.	 Introduction
In recent years, the securing of skilled human resources has 
become a serious issue in the manufacturing industry1). In order 
to resolve this issue, a production method is attracting the 
attention where a part of the manual work at manufacturing 
sites is replaced by robots, safety fences used to separate 
persons and robots are abolished, and persons and robots 
coexist to perform the work.

In general, there are two means of ensuring safety when 
introducing industrial robots: separating people from robots 
using safety fences and sensors, and adopting power and force 
limiting (PFL) cooperative robots that do not cause injury even 
if they collide with people2). The former has issues of degraded 
space efficiency and difficulty in flexible layout changes because 
the fences and safety equipment are used to secure the 
dedicated workspace for robots. The latter is fence-less and 
provides coexistence with persons, but the speed and power of 
the robot are always restricted, and the operation of the robot 
frequently stops because of collisions with persons during 

operation, which makes it difficult for industrial robots to 
achieve their original productivity.

In order to solve the above problems, attention has been 
focused in recent years on technology to detect human motion 
using sensors and to allow the robot to plan its motion 
trajectory in accordance with the human motion so that it does 
not collide with the person3,4). This technology is expected to 
reduce the frequency of robot stops due to collisions when 
coexisting with persons in a fence-less environment.

Most research in this technology adopts the methodology of 
detecting human movement in real time and monitoring the 
positional relationship of persons and robots based on that 
information. According to this method, when a person and a 
robot are approaching closer than the predetermined distance 
necessary to ensure the safety of the person, in other words, in 
the case of an over-approach, robot operation is stopped, and a 
new trajectory is generated to secure the necessary distance, and 
then robot operation is restarted.

On the other hand, in this methodology, when an over-
approach between a person and a robot is detected, the robot 
must stop the action under operation to prevent a collision 
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because the new trajectory has not yet been determined. 
Accordingly, when a robot is working closely with a person in a 
narrow workspace, the problem is the frequent interruption of 
the robotʼs work due to the frequent occurrences of over-
approach.

As one of the necessary technologies to solve the above 
problem, we worked on the technology to predict the movement 
of a person at the manufacturing site. Through this technology, 
the acquisition of human location information and the prediction 
of the positional relationship of persons and robots will be 
possible in the near future. This makes it possible to complete 
the generation of a new trajectory before an over-approach 
actually occurs, and the robot will switch to a new trajectory 
without stopping. This will mitigate the problem of stopping in 
the conventional collision avoidance operation and will permit 
the robot to smoothly avoid the possible collision with a person.

For more information, in this study, the movement of a 
person working near the robot at a manufacturing site is divided 
into two steps: (1) the movement of the trunk between work 
locations, and (2) the movement of the hands when staying at a 
position and working manually. In the current stage, we are 
working on the prediction of a personʼs trunk position as 
described in (1) above.

The changes in the position of the human trunk due to 
walking, or walking trajectory, is affected by many factors, such 
as the environment and individual differences, and is very 
difficult to derive by theoretical calculations; therefore, in recent 
years, the development of prediction technology using artificial 
intelligence (AI) has been progressing.

Conventional technologies have been used for such 
applications as predicting the walking trajectories of multiple 
people in a crowded space using image data and have been able 
to predict the positions of people after a few seconds5,6). Being a 
neural network algorithm that uses a large volume of learned 
data, the processing time for prediction is several seconds, and 
the prediction distance error is approximately 1 meter.

Furthermore, these technologies have been applied to predict 
walking trajectories in open spaces, such as automated driving 
applications for automobiles, but still not much progress has 
been made in the research on the application to the closed 
spaces of manufacturing sites. In addition, there is the issue of 
incapability to process real time according to the movement of 
the robot due to the excessive time required by the prediction 
process.

In order to achieve the aforementioned smooth avoidance of a 
collision, in this study, the methodology and the effects were 
examined on the application of conventional AI-based walking 
trajectory prediction technology to the human body trunk 

position prediction at a manufacturing site. In the study, the 
necessary prediction performance index and the target values 
were first defined, and in order to achieve it, an approach for 
applying the conventional technology to the manufacturing site 
was devised, and a specific application method was proposed 
based on it. In addition, the effectiveness and issues of the 
applied method were validated using a case example of a 
manufacturing site. The details are introduced in this paper.

Since this technology is for the collaborative work of persons 
and robots, the safety designs will also be an important point, 
but this paper focuses on AI-based prediction technology, and 
an explanation of the safety mechanism is omitted. We would 
like to only mention here that, in practice, safety is achieved by 
structuring the safety-related part and the AI-based person 
prediction algorithm in the separate systems.

2.	 Prediction Performance Index and Target 
Values

The concept of smoothly avoiding a collision by predicting the 
position of persons is embodied in Fig. 1 for the purpose of 
solving the aforementioned problem of frequent interruptions of 
the robotʼs work when in close contact with a person. In this 
flow, the position of a person after a few seconds is predicted 
(a), and the information is used to calculate the future positional 
relationship of the person and the robot and to determine 
whether an over-approach is likely to occur or not (b). The 
robot is controlled to avoid the collision if YES (c and d).

Since an over-approach must always be watched to ensure 
the safety of people during operation, (a) and (b) must be 
continuously executed with short cycles. In addition, to realize 
the smooth avoidance of a collision, an important point is to 
complete all processes (a) through (d) before an over-approach 
actually occurs, in other words, within the prediction time for 
human body trunk position prediction (a).

Consequently, the performance of (a) human body trunk 
position prediction in the processing flow in Fig. 1 is important 
in realizing this flow. As an index for this performance, we 
specified prediction processing time, predictable time, and 
prediction distance error and defined the target values for each 
as follows:

–  Prediction Processing Time
The time necessary for one (1) prediction process: It is 
necessary to reduce this index as short as possible for 
continuous execution with the aforementioned short cycle. In 
this study, an OMRON laser scanner (OS32C) was used to 
acquire the data necessary for prediction with 40 ms cycles 
(details are explained in paragraph 2.3). In order to perform 
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the prediction process continuously in conjunction with it, the 
target processing time for the prediction process was set to 
40 ms or less.

–  Predictable Time
The time in the immediate future that can be predicted by the 
prediction process: As mentioned above, the target value of 
this index should be set up according to the time necessary 
for processing (a) through (d) in Fig. 1. In this study, the 
processing times for (a) through (d) are estimated as listed in 
Table 1, depending on the system configuration. These values 
may vary depending on the performance of the implemented 
hardware; however, as a research phase, a strict evaluation 
was omitted, but stricter setups were chosen. By adding the 
buffer time for data transmission to the total of these 
necessary times, we set up the predictable time target as 
1.2 s.

 –  Prediction Distance Error
The distance between the predicted and true values of the 
human trunk position (Fig. 2): The trunk position is indicated 
with the position of the center of the trunk. This will be 
explained in chapter 3. This index indicates the correctness 
of the prediction results and should be considered as an error 
by the prediction algorithm when determining the over-
approach using the prediction results in (b) of the above flow. 
In this study, preliminary desk calculations determined what 
should be considered “close,” and the acquired result was that 
the prediction distance error of 100 mm or less was effective 
in achieving smooth collision avoidance when a person was 
working in a cylindrical area with a radius of 2 m centered 
on the robotʼs first joint rotation axis. For this reason, the 
target value was set to 100 mm or less.

Fig. 1  Smooth Collision Avoidance Process Flow

Table 1  Experiment Walking Trajectory Setup

No. in 
Fig. 1

Processing 
Time [ms] How to Determine Processing Time

a   40 Set up with the target value (chapter 2) of the predicted 
processing time.

b   10
Set up in reference to the actual values when the over-
approach detection program was executed on a general-
purpose PC.

c 100

Set up in reference to the actual value of the time 
necessary for the trajectory planning process3) for a six-
joint robot using the probabilistic roadmap method on 
dedicated processing hardware.

d 800
Set up according to the acceleration/deceleration 
performance of an OMRON collaborative robot (TM5 
series).

Fig. 2  Definition of Prediction Distance Error

3.	 Approach for Manufacturing Site Application
When using AI as the technology for the prediction of walking 
trajectory, the general method of use is to use personal/
environmental factors that affect the change in walking 
trajectory as a feature quantity and use the learning data that 
contains it to make the learner learn the laws regarding the 
change in walking trajectory with regard to the feature quantity. 
Using an already trained learner, calculate the change in 
walking trajectory through the analysis of the input data for a 
prediction containing a similar feature quantity.

The conventional AI-based walking trajectory prediction 
technologies focused on multiple walking trajectories in a 
complex environment, and in order to obtain accurate prediction 
results, considered many feature quantities, such as the location 
of obstacles and the number of people accompanying the 
person. The prediction requires several seconds of prediction 
processing time to analyze a large volume of input data 
containing the feature quantities. Because of this, there was a 
large gap compared to the target value of 40 ms for the 
prediction processing time defined in the previous chapter, and 
the algorithm could not be directly applied.

To address this problem, we tried to shorten the prediction 
processing time in this study by minimizing the number of 
feature quantities.
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Specifically, since in most cases, the people at the 
manufacturing site, the target of the prediction in this research, 
walk on flat ground, and the change in position in the height 
direction is minimal, the position of the trunk can be expressed 
by the projection of the trunk center point, that is, the 
coordinate values (x, y) of the trunk center point (Fig. 3). 
Therefore, we decided to use the trunk center coordinates (x, y) 
as the minimum necessary feature quantities for predicting the 
walking trajectory. Adding the factors, such as the variation in 
manual work time, to the feature quantities may further improve 
the prediction accuracy of the walking trajectory, but since it is 
a trade-off with prediction processing time, it was excluded 
from consideration this time because the prediction processing 
time was prioritized. If this feature quantity is needed for 
further improvement, we will consider it in the next step.

Fig. 3  Body Center Coordinates

4.	 Prediction Methodology Details
4.1	 Overview
Based on the aforementioned approach of minimizing the 
number of learning feature quantities, we proposed a method to 
apply AI-based walking trajectory prediction technology to the 
prediction of human trunk positions at the manufacturing sites. 
An overview of the method is explained according to the 
following viewpoints:

–  Feature Quantities
As described in chapter 3, x and y of the personʼs trunk 
center coordinates are used as the feature quantities.

–  Learning Data
The time series data of the trunk center coordinates are used as 
the learning data. Make the learning machine learn the law for 
the change in the center of the trunk coordinates with these.

–  Learning Machine
A deep binary tree (DBT) learning machine (machine 
learning package, AISing Ltd.) based on the dynamic system 
learning tree method7) was adopted as the learning processor. 
DBT is good at high speed learning processing with a small 

volume of data and featured the ease of use in a built-in 
system due to its low computational effort. This research as 
well, since there was not much learning data, finally adopted 
the DBT, which was easy to integrate into a robot system and 
provided high-speed processing.

–  Prediction Algorithm
By acquiring time series data of the trunk center coordinates 
of a person that repeats a manufacturing process in real time, 
and inputting it into a learning machine that has been 
previously trained with the above learning data, the trunk 
center coordinate values of the immediate future are acquired 
as output data. Furthermore, as a characteristic of supervised 
AI technology, the more valid the input data for prediction, 
the more accurate the prediction will be; accordingly, in the 
stage of advanced learner training, tuning of the parameters 
related to the input data format is performed to improve the 
prediction distance error.

–  System Configuration
As shown in Fig. 4, in this study, three laser scanners 
(OS32C) are allocated at the same height as the human waist 
to continuously detect the coordinate values of the body 
contour point group around the waist with a 40 ms cycle. The 
detected data is sent every cycle to a prediction processing PC 
implemented with a prediction algorithm, and the coordinate 
values x and y of the center point of the point group are 
calculated and are used as the body center coordinate values 
at the time when the point group is detected. The time-series 
data of trunk center coordinate values acquired through this 
method are stored in the learning/prediction data storage 
section and analyzed in the processing section.

Fig. 4  Trunk Center Position Prediction System Configuration
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4.2	 Detailed Algorithm
The detailed algorithm of the application method proposed in 
this study is explained using a processing flow. As shown in 
Fig. 5, the processing flow of this method consists of three 
sections, A through C.

Section A (Human Body Trunk Center Coordinate Detection)
This section acquires and stores the trunk center coordinate 
values (x, y) as described in the system configuration above 
(Section 4.1).

Section B (Training of Learning Machine)
This chapter makes the DBT learning machine learn the law of 
trunk center coordinate fluctuations, in other words, the 
relationship between past trunk positions and future trunk 
positions, based on the human trunk center coordinate data 
accumulated in section A. It also tunes the parameters related to 
the input data format for acquiring more accurate prediction 
results.

The processing performed in this section is explained using 
Fig. 6. The symbols in the figure for the trunk center 
coordinates (x, y) indicate the time at which the coordinate 
values were obtained. For example, (xn, yn) represents the trunk 
center coordinate values obtained at time n.

First, let the learning machine learn the relationship between 
past trunk center positions and future trunk center positions. 
Specifically, as shown in B-1 in Fig. 6, a part of the data 
accumulated in section A is acquired as the data for training. 
Every time data is acquired (time p in the example in the 
figure), use the previously acquired data as the training input 
data and extract the later acquired data as the training output 
data to create a data pair. And, let the learner learn these 
training data pairs. Here, the input data format is determined by 
the volume of data (k) and the time interval between data (a) 
and tuned as described later. The volume of output data (l) and 
the time interval (b) are not tuned but are set up according to 
the prediction requirements.

Next, as shown in part B-2 in Fig. 6, a part of the data 
accumulated in section A is acquired as the data for error 
evaluation, and the prediction distance error for the trunk 
position prediction by the learning machine already trained in 
B-1 is evaluated. The evaluation method will be explained in 
paragraph 5.2.

Furthermore, performing a grid search within a certain range 
for the input data format parameters “k” and “a”, and repeating 
the learning (B-1) and the evaluation (B-2) in Fig. 6, we find the 
values of “k” and “a” that give the minimum prediction distance 
errors.

Section C (Human Trunk Center Coordinate Prediction)
This section predicts the human trunk center coordinates in 

the immediate future using a trained learning machine obtained 
in section B and the values “k” and “a”.

The details of processing are explained using Fig. 7 as 
follows:

Acquire the time series data of the trunk center coordinates 
from section A until the current time (time “t” in the example in 
the figure) and create the input data for prediction using the 
values of “k” and “a” determined in section B.

Input this into the already trained learning machine and 
acquire the trunk center coordinates in the immediate future (of 
l×b seconds in the example in the figure).

If the robot position information in the immediate future is 
added using this prediction result, the positional relationship 
between a person and the robot in the immediate future is 
estimated in block “b” of the aforementioned avoidance process 
flow (Fig. 1), and it becomes possible to determine whether an 
over-approach will occur or not.

Fig. 5  Prediction Technology Application Method Processing Flow
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Fig. 6  Section B Processing Details

Fig. 7  Section C Prediction Processing Details

5.	 Performance Evaluation
In this chapter, the results of evaluating the application 
methodology for the aforementioned AI-based walking 
trajectory prediction technology in terms of predictable time, 
prediction processing time, and prediction distance error in an 
experimental environment that simulates a U-shaped 
manufacturing line as one of the case examples of a 
manufacturing site. Paragraph 5.1 describes the conditions of 

the experiment, paragraph 5.2 describes the evaluation method, 
and paragraph 5.3 describes the results and discussions on the 
experiment.

5.1	 Experimental Conditions
Experimental Environment Setup

The layout of an experimental environment was designed in 
reference to the U-shaped manufacturing line for assembling 
small electronic components in our factory. Fig. 8 shows a birdʼ
s-eye view of this layout. As shown in Fig. 8, a person walks 
and moves for working in the dot pattern area, which is 
surrounded by the workbenches installed in U-shape. For 
covering the entire walking area, three laser scanners for trunk 
contour detection are installed. For the coordinate systems of 
the human trunk center, the layout direction of the workbenches 
(1) through (3) was set as the X-axis and its vertical direction as 
the Y-axis.

Fig. 8  Experimental Environment Layout Bird’s Eye View

Experimental Walking Trajectory
Based on the walking trajectories of a worker engaged in the 

assembly work for small electronic components in a U-shaped 
manufacturing line of our plant, the following four experimental 
walking trajectory configuration indices were extracted. In 
addition, based on the results of a series of surveys on multiple 
working processes, the respective typical values were 
determined.

–  Trajectory Shape
Shape of the walking trajectory: In this experiment, we 
defined three shapes: a straight line, Z-shape, and aisle 
intersection (Figs. 9 to 11). In the figure, the arrow lines 
indicate the movement of a person; a round point is the start 
point, and the arrow is the end point. Each number of the 
lines indicates the order of the movement.

–  Speed
Walking speed when a person moves: In this experiment, the 

NING Xiaoguang� Robot Collision Avoidance Technology at Manufacturing Sites that Apply AI Prediction Technology for Walking Trajectories

6



NING Xiaoguang� Robot Collision Avoidance Technology at Manufacturing Sites that Apply AI Prediction Technology for Walking Trajectories

setups were defined in two stages: low speed (about 1,000 
mm/s) and high speed (1,600 mm/s). The value specified in 
the person-robot cooperative safety standard (ISO 10218-1/
TS 15066) was adopted as the speed for the high speed.

–  Moving Distance
Distance of the movement: The distance is the length of the 
arrow lines in Fig. 9 through Fig. 11. In this experiment, two 
different setups, 600 mm and 1,200 mm, were adopted.

–  Stop Time
The period when a person stops at a workbench for work. In 
other words, the movement stop time between the arrow 
lines, which indicate movement, in Fig. 9 through Fig.11. In 
this experiment, the setup is in two values of 2 s and 10 s.

With the combination of the above indices, six different 
walking trajectories were set up (Table 2). The pattern most 
frequently seen in the field, #1, was defined as the standard 
pattern, and #2 through #6 were set up with only one of the 
indices changed based on #1. It was considered that this setting 
would provide the evaluation of the relationship of individual 
trajectory indices and the prediction results.

Fig. 9  Straight Line Trajectory Shape

Fig. 10  Z-Shape Trajectory

Fig. 11  Aisle Intersection Trajectory Shape

Table 2  Experimental Walking Trajectory Setups

# Trajectory Shape Speed 
[mm/s]

Moving 
Distance 

[mm]

Stop 
Time 

[s]

Volume of 
Learning 

Data

Volume of 
Evaluation 

Data

1 Straight Line about 1000   600   2 9102 4551

2 Z-Shape about 1000   600   2 8663 4332

3 Aisle Intersection about 1000   600   2 9207 4603

4 Straight Line about 1600   600   2 6332 3166

5 Straight Line about 1000 1200   2 4477 2239

6 Straight Line about 1000   600 10 9637 4818

Parameter Setups related with Prediction Processing
–  Tuning range of parameters (k and a) for the input data format

In this experiment, “k” was tuned in the range of [1, 100] 
with the increment of 1, and “a” was tuned in the range of 
[0.04 s, 4 s] with the increment of 0.04 s.

–  Setup of the output data format (l and b)
In this experiment, the predicted output data (l) was set to 
three patterns of 30, 50, and 100, and the between data time 
interval (b) was set to 0.04 s. According to the combination 
of l and b, the predictable time (l×b) was set to 1.2 s, 2 s, 
and 4 s

5.2	 Evaluation Method
In the experimental environment described above, a single 
worker repeats the movement along each aforementioned 
experimental walking trajectory 30 times respectively. During 
that time, the trunk center coordinate value data of the worker is 
acquired by the aforementioned prediction system (Fig. 4), and 
the learning machine is trained using the data of 20 times out of 
30 times as the data for learning.

Using the remaining 10 datasets as the data for evaluation, 
the trunk center coordinate values of 1.2 s, 2 s, and 4 s ahead 
for each trajectory are predicted, and the prediction performance 
indices were evaluated using the following method. The data for 
training and evaluation for each trajectory is shown in Table 2.

–  Prediction Processing Time Evaluation Method
When conducting an experiment, the time required for the 
prediction processing section of this technology (section C in 
Fig. 5) is measured per loop. The maximum value of this 
time is taken as the prediction processing time.

–  Prediction Distance Error Evaluation Method
For each trajectory, the relative distance between the 
measured and predicted coordinate values at each time is 
calculated every time the trunk center coordinates are 
acquired, and the maximum value is taken as the prediction 
distance error. In this experiment, the mean +3σ of the 
distance distribution is taken as the maximum value. Since 
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the influence of the variation in laser scanner measuring 
distance is large, and the sensor measurement variation is 
generally evaluated using 3σ, the predicted distance error is 
evaluated using 3σ.

5.3	 Experimental Results
The results of the evaluation experiments conducted in 
accordance with the methods described in Paragraphs 3.1 and 
3.2 are summarized in Table 3.

As for the predicted distance error, the longer the prediction 
time, the greater the error becomes in many cases, and the 
maximum error in the case of a prediction of 1.2 s ahead is 304 
mm, which deviates from the target value of this study. The 
maximum error for predicting 4 s ahead was 544 mm, and its 
occurrence in trajectory #2 was confirmed.

For the predicted processing time, it was confirmed that the 
processing time for all experimental cases was 1 ms or less with 
a maximum value of 0.4 ms. The target of 40 ms was cleared, 
and it was found that the prediction system configuration of this 
study could perform continuous prediction processing with a 40 
ms cycle.

For future improvement, the influence factors on the errors 
were investigated using the experimental data. Table 4 shows 
the number of stops per cycle and the total stop time per 
trajectory. As a trajectory that shows relatively large errors, 
trajectory #2 was found to have a large number of stops per 
cycle, and trajectory #6 had a long stop time per cycle. This 
indicated that the number of stops and the stop time per cycle of 

Table 3  DBT Method Evaluation Result

Trajectory #1 Trajectory #2 Trajectory #3 Trajectory #4 Trajectory #5 Trajectory #6

Prediction 
Time [s]

Distance 
Error [mm]

Processing 
Time [ms]

Distance 
Error [mm]

Processing 
Time [ms]

Distance 
Error [mm]

Processing 
Time [ms]

Distance 
Error [mm]

Processing 
Time [ms]

Distance 
Error [mm]

Processing 
Time [ms]

Distance 
Error [mm]

Processing 
Time [ms]

1.2 132 0.1 304 0.2 131 0.2 150 0.2 110 0.1 279 0.2

2 130 0.2 416 0.3 113 0.3 153 0.2 112 0.1 303 0.1

4 151 0.3 544 0.2 123 0.2 184 0.2 109 0.2 345 0.4

the trajectory to be predicted may influence the prediction 
distance error.

Table 4  Number of Stops and Stop Time per Cycle of Waking Trajectory

Trajectory # Number of Stops Total Stop Time [s]

1 4   8

2 6 12

3 3   6

4 4   8

5 2   4

6 4 40

5.4 Comparison with Conventional Methods
For a comparison with the prediction results by the prediction 
method in this study using DBT, the prediction and evaluation 
methods using an orthodox time series analysis method in 
accordance with the evaluation method in 5.2 were conducted, 
using the time series data of the trunk center coordinates of six 
trajectories acquired under the experimental conditions in 5.1.

As an orthodox method, the ARIMA model and LSTM were 
employed.

The ARIMA model is an abbreviation for auto-regressive 
integrated moving average model, which is a typical method 
used in statistics for time series analyses8). In this study, we 
used Pythonʼs Darts library. Because a univariate analysis was 
possible, we prepared separate learning machines for trunk 
center coordinates X and Y to carry out the prediction.

LSTM is the abbreviation for long short-term memory, which 
is a kind of RNN and is characterized by its ability to deal with 

Table 5  Evaluation Result of Three Prediction Methods

Trajectory #1 Trajectory #2 Trajectory #3 Trajectory #4 Trajectory #5 Trajectory #6

Prediction 
Time [s]

Learning 
Machine

Distance 
Error 
[mm]

Processing 
Time [ms]

Distance 
Error 
[mm]

Processing 
Time [ms]

Distance 
Error 
[mm]

Processing 
Time [ms]

Distance 
Error 
[mm]

Processing 
Time [ms]

Distance 
Error 
[mm]

Processing 
Time [ms]

Distance 
Error 
[mm]

Processing 
Time [ms]

1.2

ARIMA 620 54.1 612 41.3 296   42.7 232 30 178 51.2 432 40.3

LSTM 135   9.3 309   8.9 131     8.9 253   7.9 126   7.9 278   7.9

DBT 132   0.1 304   0.2 131     0.2 150   0.2 110   0.1 279   0.2

2

ARIMA 781 62 787 42.8 355 100.2 219 25 218 51.9 595 52.0

LSTM 137 13 436 12.8   99   12.8 278 11.3 128 11.3 312 11.2

DBT 130   0.2 416   0.3 113     0.3 153   0.2 112   0.1 303   0.1

4

ARIMA 901 48.5 900 42.7 366   43.7 224 40.2 148 42.9 770 32.8

LSTM 145 22.9 589 22.8 104   22.9 350 20.3 118 20.2 369 20.2

DBT 151   0.3 544   0.2 123     0.2 184   0.2 109   0.2 345   0.4
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longer-term series9). This time, we used Pythonʼs Darts library. 
Since multivariate prediction is possible, the trunk center 
coordinates X and Y were predicted simultaneously by a single 
learning machine similarly as DBT.

The evaluation results for the prediction distance error and 
processing time of the six trajectories using the three methods 
(ARIMA model, LSTM, and DBT) are shown in Table 5.

It was confirmed that the distance error was almost DBT < 
LSTM < ARIMA. In trajectory #4, the distance error of DBT 
was prominently smaller than LSTM and similar or slightly 
smaller than LSTM in other trajectories.

In terms of processing time, DBT < LSTM < ARIMA was 
confirmed for all trajectories, and the speed of prediction 
processing of DBT was found to be more than 10 times faster 
than LSTM.

6. Conclusions
In this study, in order to achieve smooth person-robot collision 
avoidance, we defined the performance indices and target values 
of the human trunk position prediction technology and proposed 
a method to apply the AI-based walking trajectory prediction 
technology to human trunk position prediction in manufacturing 
sites based on the use of trunk center coordinates as the feature 
quantity.

The effectiveness of the method was evaluated in a simulated 
environment of a U-shaped manufacturing line. As a result, it 
was possible to predict the position of the human trunk 4 s 
ahead with a processing time of 0.4 ms, and the maximum 
prediction distance error was 544 mm. In addition, comparative 
evaluation experiments have shown that our method has better 
prediction accuracy than orthodox time series analysis methods, 
and the processing speed was more than 10 times faster.

Regarding the prediction distance error by this method, it was 
found that it could not achieve the goal and needed to be 
improved. This was due to the frequent stops and long stop time 
of the trajectory to be predicted and made it difficult to predict 
the next action. As a countermeasure, we are considering the 
possibility of improving the AI judgment precision and the 
prediction distance error by adding the information that allows 
predicting the next action to the prediction process, such as 
tracking the visual line of workers or monitoring the state of 
manual work when stopped.

In the future, we will improve the practicality and versatility 
of this method by improving prediction distance error and 
evaluating the increased number of case examples of 

manufacturing sites. In addition, we will continue our research 
aiming at the acquisition of technologies for handling multiple 
people and predicting hand motions, and eventually realize 
smooth person-robot collision avoidance using human motion 
prediction technology, thereby contributing to the practical 
application of a person-robot collaborative production 
environment where safety and productivity are highly 
compatible.
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