
SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

Contact : SHIMAKAWA Haruna haruna.shimakawa@omron.com

Production Equipment Virtualization 
Technology by Integrated Development 
Environment for Factory Automation
SHIMAKAWA Haruna and IWAMURA Shintaro

Rapidly changing market needs have resulted in the demand for shorter launching times for production facilities. 
In conventional methods where only physical machines were used, production facility launches took longer 
because of stand-by time and teaching positions and orientations of robots. A virtual launching environment where 
multiple independent software programs work together has been proposed to resolve this issue, but complex 
configurations for data coordination and difficulty in time synchronization between software programs are 
challenges.

To overcome those challenges, we have defined system data that can be used throughout the system for linking 
the data in each function on an factory automation integrated development environment, and then we have 
developed Virtual Modules to seamlessly interlink and synchronize the data.

We have launched actual production facilities with our virtualization technology for the purpose of validation. 
The launching time decreased by 56%, which proves the effectiveness of our virtualization technology.

1. Introduction
Product life cycles are becoming shorter these days because of 
rapidly changing market needs. The manufacturing industry 
must launch a production line and start production as quickly as 
possible to meet such market trends, and it will enhance 
competitiveness.

In launching production line, debugging of the control 
program has generally been conducted using the actual 
equipment1). However, such debugging procedures using the 
actual equipment are generally not efficient because it is 
necessary to wait until assembly, wiring work of the equipment 
is completed, and it is also necessary to operate the equipment 
slowly to check and avoid collisions.

To solve the problems associated with inefficiency in the 
launch of production line using actual equipment, virtualization 
technology is used for debugging and teaching of production 
line without using the actual line. However, to virtualize the 
entire production line, it is necessary to link multiple simulation 
software, but setting up them to align and synchronizing times 
are difficult.

We virtualize a production line with Sysmac Studio, the 
integrated development environment for factory automation 
offered by OMRON to solve those challenges. The feature of 

Sysmac Studio is that it consists of a single software program, 
which makes automatized data coordination and time 
synchronization possible. We have defined the system data that 
can be used throughout the system for coordination of the data 
in each function and developed virtual modules that can 
seamlessly coordinate and synchronize such data.

In Section 2 of this paper, details of the problems 
encountered in production line development using the 
conventional method are explained. In Section 3, details of the 
virtualization technology implemented are explained, and in 
Section 4, validation results of the virtualization technology are 
discussed. Section 5 provides a summary of this paper and 
future vision and challenges.

2. Problems
2.1	 Inefficiency	 in	 launch	 of	 production	 line	 using	 actual	

equipment	only
Fig. 1 shows the conventional development process in the 
launch of production line.

1

OMRON TECHNICS Vol.53.013EN 2021.7



Fig. 1 Conventional launch process of production line

Production lines have been generally developed with the 
actual equipment. Control programs for robots and peripherals 
were created to control such a system which Fig. 2 illustrates, 
and validating their operations required actual equipment to 
control. As a result, there is often a waiting period after 
programming until the actual equipment is ready, which 
reduced the efficiency of the production line launch. Debugging 
with the actual equipment sometimes requires a change in a 
mechanism position or wiring. While the position of the 
mechanism or wiring is being reviewed, debugging stops, 
which will decrease efficiency. Teaching a robot also takes time 
since an operator must slowly move the robot to avoid damage 
caused by colliding with other objects.

Fig. 2 Production equipment control system typical architecture

2.2	 Issues	 associated	 with	 virtualization	 using	 multiple	
software

The technology to virtualize an entire production line 
eliminates the inefficiency in production line launching 
described in Subsection 2.1 since virtualizing the whole 
production line allows us to debug or teach robots in the virtual 
space while assembling the actual equipment and wiring. 

Production line development using virtualization technology is 
more effectively planned than using the actual equipment only.

Virtualization of the entire production line demands 
virtualizing all equipment in the line, which requires different 
simulators, respectively. As time synchronization between 
multiple simulators is difficult, it is also difficult to reproduce 
the identical operation of the actual equipment as a result2).

3. Virtualizing an entire production line with 
single software

We integrate multiple simulators into OMRONʼs Sysmac 
Studio, the integrated development environment for factory 
automation, to virtualize a whole production line. Sysmac 
Studio can virtualize all elements of the production line: robots, 
peripherals, I/O devices, vision sensors, and parts assembled in 
the production line.

Specifically, we have developed the Robot Integrated CPU 
Units3), which combines a machine automation controller and 
robot controller to integrate controls of robots and control 
devices. Then we have developed the Robot Integrated 
Simulator to virtually operate a Robot Integrated CPU Unit on 
a computer to integrate into Sysmac Studio. The single 
simulator can link and synchronize the I/O data of robots and 
control devices in real-time.

Next, we have developed modules for virtualizing all 
elements in a production line (Virtualization Modules). 
Subsection 3.1 describes solutions for Sysmac Studioʼs 
software architecture consists of different virtualization 
modules. It is also necessary to realize the programming 
environment for virtualization to define virtual operations. 
Details of the programming environment for virtualization are 
explained in Subsection 3.2. Subsection 3.3 and the following 
sections provide details about virtualization modules defined in 
Subsection 3.1.

3.1	 Software	architecture	 to	virtualize	an	entire	production	
line	with	single	software

Fig. 3 shows the software architecture for production line 
virtualization with Sysmac Studio. Fig. 4 illustrates the sample 
production line configuration with a Robot Integrated CPU 
Unit. The production line consists of the I/O device to control 
the sensor, vision sensor, servo motor, and robot.

SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

2



SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

Fig. 3 Software architecture for virtualization with Sysmac Studio

Fig. 4	 Example	of	production	line	configuration	including	Robot	Integrated	CPU	
Unit

The foundation required to implement all virtualized 
modules by a single software is Common Framework. Common 
Framework is a module that provides the common functions 
and interfaces to the modules and controls lifecycles of the 
modules from creation to deletion. Virtual Programming Engine 
executes control and simulation programs for production lines. 
Virtual Programming Engine includes the simulator of the 
Robot Integrated CPU Unit and the programming environment 
for simulations. 3D Engine is the module that manages the 
shape data of 3D models for an entire production line, performs 
the 3D visualization function, and controls the models not to 
collide. Virtual Robot, Virtual Peripheral, Virtual I/O, Virtual 
Vision Sensor, and Virtual Part are the virtualized elements of a 
production line on 3D Engine. Virtual Robot and Virtual 
Peripheral are broken down into movable parts, and kinematics 
calculation models according to robot type are assigned to the 
movable parts. Inputs of motor command values obtained from 
calculations of the control program replicate the operations of 
Virtual Robot and Virtual Peripherals on 3D Engine.

Virtualizing the entire production line system with a single 
software requires sharing the data of individual functions so 

that the system can use the data as the system data for the 
whole system, and the data in each module must be shared with 
other modules. However, sharing the module data increases 
interdependence among modules and complexity and results in 
low operation performance and high memory usage. To avoid 
such issues, we manipulate the module data as the system data, 
shared with the entire system. The system data for 
virtualization must share the data that identify a 3D modelʼs 
position and the state variable data storing the 3D modelʼs 
state. For this purpose, we define an abstract interface common 
with different position data, e.g., the 3D position data for 3D 
models and the operational position data of peripherals. We 
have developed the function to display these data on the 3D 
Engine in the absolute coordinates automatically to manipulate. 
Furthermore, this function allows managing the position data as 
the common data from any module. We have realized the 
system data to enable data sharing while preventing direct 
linkage between modules using the abstracted state variables 
given the unique ID information with the hierarchy structure 
shared in the whole system. The number of system datasets is 
usually over 1,000 in a general production line, and 
accordingly, increasing data volume causes issues like 
performance degradation and high memory consumption. We 
have solved the issues by using the ID with the hierarchy 
structure reduces the search volume to access the data at high 
speed, compared with the data transmission with the simple 
parallel data structure. The ID is a relative ID and it decreases 
memory consumption when a hierarchy of the data increased. 
These system datasets achieve the virtualization of an entire 
production line to enable real-time monitoring on a large 
production facility.

3.2	 Realization	of	simulation	programming	environment	for	
virtualization	of	entire	production	line

For virtualization of the operation of an entire production line, 
programming the virtual operations of the object (part) that is 
not directly controlled by an actuator is necessary, since 
generating conditions and indication position to define virtual 
operation of a part are not included in the control program. It is 
also necessary to define virtual operations of the I/O device, 
such as sensor, since we cannot connect actual I/O devices in 
the virtual space.

Because the operations in the virtual space must be defined 
flexibly depending on the state of the control program rather 
than defined in a standardized and straightforward way, a 
virtualization-dedicated program written in a specialized 
language is generally used for definition. Generally, a 
virtualization program is written in a specific programming 

3



language. However, it will take time to familiarize such a 
special language4). Accordingly, we have developed the script 
language (Shape Script) for Sysmac Studio, which based on the 
C#, the all-purpose programming language.

Acquiring the control data of I/O operations in real-time to 
change position indications of objects such as a part is required 
while the Shape Script is running. The Shape Script must be 
executed in the same process where the Shape Script shares the 
memory space with Sysmac Studio. The process is a unit of 
program execution in the Windows environment. Including the 
Shape Script in the same process enables sharing the memory 
space and exchanging information in real-time. We have built 
the structure to compile a Shape Script and generate assembly 
to load it into the same process before execution. However, 
when the Shape Script is solely loaded into the same process, 
the shared memory cannot be released if the Shape Script stops. 
To resolve this issue, we have created a system to separate the 
memory space in a process.

Shape Script and Sysmac Studio are applications run on the 
Windows environment, and use the .NET Framework, the 
common library provided by Microsoft. The .NET Framework 
is one of the common language runtimes (CLR), the operating 
environment of the Windows program. A CLR has the 
“application domain” as the control unit of the execution code. 
Dividing the application domain allows to divide the memory 
space. Therefore, we have separated the application domains of 
the Shape Script and Sysmac Studio as shown in Fig. 5. This 
makes Sysmac Studio unaffected even when the Shape Script 
assembly is loaded or unloaded.

Fig. 5	 Communications	between	Shape	Script	and	Sysmac	Studio

Execution conditions for an operation to define will vary in 
many cases depending on the Robot Integrated CPU Unit state. 
Such state is stored in a variable. Therefore, a Shape Script 
needs to obtain variable values from the simulator of the Robot 
Integrated CPU Unit.

Sysmac Studio has a function to obtain the values of the 
designated variables from the simulator of a Robot Integrated 
CPU Unit. Since the Shape Script and Sysmac Studio 
application domains are divided, Sysmac Studio can acquire 
variable values through communications between both 

application domains.
For the communications between the application domains as 

shown in Fig. 5, we have developed the dedicated module 
(Variable Presenter Module) that abstracts the state variables 
obtained in the application domain of Sysmac Studio and 
shares them among modules. This module realizes inter-module 
marshaling (data exchange) of the state variables. Also, the 
variable presenter module achieves marshaling of the system 
data, making the assembly of the Shape Script the subject of 
marshaling. In marshaling, the data are tentatively serialized 
and stored in the memory space, then exchanged between 
application domains and deserialized before data exchange. 
Therefore, the data structure affects the performance and 
memory capacity directly. In order to ensure the performance, 
we have eliminated the information that can be re-constructed 
outside the application domain from the marshaling targets and 
included only the data of positions or states necessary for 
virtualization to achieve a high-speed state variable marshaling 
of the Robot Integrated CPU Unit.

3.3	 Realization	 of	 virtual	 part	 for	 virtualization	 of	 entire	
production	line

As explained in Subsection 3.2, virtualization of the part is 
impossible by executing a simulation of the control program 
only. We define the state of a virtual part according to the 
simulation of the control program with a Shape Script 
describing operations in the virtual space.

Operating the virtual part requires defining the operation 
conditions a Shape Script. The conditions are determined 
depending on the Robot Integrated CPU Unitʼs state. For 
example, the operation that a robot hand grips the virtual part 
can be defined by the script describing to detect a gripping 
signal input to the robot hand.

Secondly, the Shape Script must define the state of the 
virtual part when the conditions are satisfied. The state to be 
defined is the visibility or the indication position (coordinates) 
of a virtual part. When the virtual part is fed to the production 
line, the state is visible; when the virtual part is removed from 
the production line, the state is invisible. With respect to the 
indication position, it should be defined so that the virtual part 
follows the robot hand when the gripping signal input to the 
robot hand is detected. To actualize these settings, we generate 
instances of a virtual part with a Shape Script to toggle the 
visibility and the indication positions of each instance.

The position information of virtual parts is critical when a 
problem related to it occurs. For example, if the robot fails to 
pick up a virtual part from the conveyor, it is necessary to 
investigate where the virtual part is on the conveyor. We have 

SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

4



SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

achieved tracing the indication position of the virtual part in the 
virtual production line and showing the tracing result in a graph 
to identify the problem regarding parts and debug readily. Fig. 
6 shows examples of indication position graphs.

Fig. 6	 Tracing	results	of	the	virtual	part	indication	position

Fig. 6 shows the changes to the x, y, and z coordinates when 
a virtual part carried on the conveyor in the x-axis is gripped 
and picked up by the robot hand in the virtual space. The graph 
on the left indicates that the virtual part moving in the x-axis 
stops and starts moving upward in the z-axis immediately after 
the gripping signal is input to the robot hand. The graph on the 
right shows that the virtual part does not stop moving in the 
x-axis at the input of the gripping signal, and the robot hand 
failed to pick up. Comparing the two graphs suggests the 
position of the virtual part shifts in the y-axis direction, and an 
operator should adjust the virtual part position or the pick-up 
position of the robot hand in the y-axis direction. Tracing the 
position of the virtual part will allow identifying the point 
where a problem occurs readily.

3.4	 Realization	 of	 virtual	 I/O	 for	 virtualization	 of	 entire	
production	equipment

It is necessary to define the virtual operation of the I/O since an 
actual I/O is not connected to the virtualized production line, as 
mentioned in Subsection 3.2. The sensors to detect parts, such 
as the photo sensor, and the sensors to detect the actuating 
position of the mechanism, such as the limit switch on an air 
cylinder, are commonly used in production lines. Therefore, we 
have developed the Virtual Part Detection Sensor and Virtual 
Actuation Position Sensor as virtual I/O devices.

The common requirement for both sensors is to switch I/O 
variables to True or False, when the condition to detect the 
virtual part is satisfied or not. As the I/O variables are defined 
in the Robot Integrated CPU Unit, I/O variables can be set 
through the Variable Presenter module from the Shape Script.

The I/O variable of the Virtual Part Detection Sensor 
switches when the virtual part enters or exits the predetermined 
area. The 3D Engine displays the detection area for the Virtual 

Part Detection Sensor to define these conditions. We determine 
the presence or absence of collision of the 3D model of the 
virtual part to the Virtual Part Detection Sensorʼs detection area 
on the 3D Engine as the condition to switch the IO variable. 
Fig. 7 shows the 3D models of the Virtual Part Detection 
Sensor and virtual parts displayed on the 3D Engine.

Fig. 7 3D models of the Virtual Part Detection Sensor and virtual parts

The 3D Engine detects an collision between 3D models 
based on the collision check explained later in Subsection 3.6. 
A Shape Script can acquire the collision detected by the 3D 
Engine by referencing the instances of the 3D models, and a 
designer can create a script to compensate the operation of an 
actual I/O device only by describing the Shape Script to change 
the I/O variable when collision between the 3D models occurs.

When the movable part of a peripheral moves to the 
predetermined position, the I/O variable of the Virtual 
Actuation Position Detection Sensor toggles. In an air cylinder, 
the I/O variable corresponding to the piston extension complete 
signal should switch after a certain period passed since the I/O 
variable for starting air charge becomes True because the I/O 
variable switches when the piston extends and retracts.

The Shape Script using the Variable Presenter module can 
detect changes in the I/O variable. In the same way as the I/O 
variable, the Shape Script can acquire the time information to 
measure time lapse since the simulator of the Robot Integrated 
CPU Unit contains the time information in the variable. As 
explained above, it is easy to make the Shape Script to switch 
the I/O variable of the Virtual Actuation Position Detection 
Sensor after a certain period since the I/O variable for starting 
air charge becomes True.

Some production lines have 100 or more sensors to detect 
parts and actuation positions of peripherals, and considerable 
person-hours are necessary to define virtual operations for all 

5



these sensors in a Shape Script. However, the virtual operation 
of an I/O is represented with a pattern code, unlike the virtual 
part. We have automatized defining the virtual operations using 
a Shape Script with simple settings in the I/O variables 
corresponding to the respective virtual I/O and shortened the 
time for defining I/O virtual operations with the Shape Script.

3.5	 Realization	of	 virtual	 vision	 sensor	 for	virtualization	of	
entire	production	line

Vision sensors in a production line detect the position of the 
parts randomly fed onto the conveyor or visually inspect 
products. We have developed the Virtual Vision Sensor that 
virtually performs the vision sensor engine on a computer. The 
virtual part position detection and visual inspection simulations 
are available by inputting the prepared image data into the 
Virtual Vision Sensor.

An actual vision sensor requires calibration to adjust the 
positions of the vision sensor, robot, and peripherals. We have 
realized automatic calibration by arranging the vision sensor, 
peripherals, and robot in the virtual space. Additionally, we 
have virtualized parts using multiple images with the Shape 
Script. These achievements suggest that automatic generation of 
virtual parts and replicating position detection of different kinds 
of virtual parts with images in the same way as in an actual 
production line are possible. Arranging the objects on the 
virtual space enables the robot to precisely pick up the virtual 
parts in tracking the virtual parts on the conveyor. Fig. 8 shows 
the Virtual Vision Sensor allows position detection and tracking 
of different kinds of virtual parts. The robot picks up the part in 
Fig. 8 (a) and places the part in Fig. 8. Displaying the order of 
the parts gripped by each kind of the virtual parts in 3D 
realizes the system data part control and visualizes it.

Fig. 8	 Part	tracking	by	Virtual	Vision	Sensor

3.6	 Realization	of	collision	check	for	virtualization	of	entire	
production	line

One of the most time-consuming operations in the launch of a 
production line is teaching a robot. An operator creates 
teaching points by moving the Tool Center Point (TCP) of the 
robot to positions to be learned and recording. Then the 
operator makes a robot program connecting the recorded 
teaching points to generate a robot path.

In teaching with an actual robot, the operator must slowly 
and carefully move the robot to avoid a collision. On the other 
hand, teaching in the virtual space can save time since there is 
no risk of physical damage to devices even when a collision 
occurs in the virtual space, and the operator can move the robot 
at a higher speed than the actual robot. Also, preparative offline 
teaching in the virtual space can reduce actual robot teaching 
time because the operator does not have to do tasks than 
adjusting the teaching points.

Generating a robot path that will not cause a collision is vital 
in offline teaching. When the robot collides with peripherals in 
the virtual space, the collision can be avoided by modifying the 
teaching points. Therefore, it is required to detect when and 
where a collision occurs in the robot path.

For this purpose, we have introduced the Collision Check 
function into the 3D Engine to indicate a colliding 3D model 
by color change. As the collision check using 3D models in the 
3D space generally requires long computation time and large 
memory consumption, a box indicating borders, which 
simplifies a 3D model, is generated internally in many cases. In 
the 3D simulation of Sysmac Studio, an collision check is 
implemented by generating border-indicating boxes using 
convex hull or approximate convex decomposition5,6). Fig. 9 
shows border-indicating boxes generated by convex hull and 
approximate convex decomposition.

Fig. 9 Border-indicating	boxes	generated	by	convex	hull	and	approximate	convex 
decomposition

SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

6



SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

The characteristics of a 3D model determine the selection 
between convex hull or approximate convex decomposition. 
Approximate convex decomposition can represent 3D models 
with complex shapes as (a) better, but convex hull is suitable 
for relatively simple shapes like (b) since the calculation cost is 
low. Depending on the 3D models, users can select a suitable 
border-indicating box.

Sometimes positions of the virtual peripherals and parts in a 
production line simulation may differ from the positions in 
offline teaching, and the difference may make the robot collide 
with peripherals or parts in the simulation in the virtual space. 
If such collision is detected, offline teaching is necessary again. 
Suppose it is impossible to identify when and where the 
collision occurs during simulation precisely. In that case, it will 
be impossible to find which teaching point needs adjustment, 
and the offline re-teaching will demand extra time.

Collision may be left unnoticed if collision notification is 
given only by color changes in the 3D model during 
simulation. To prevent missing the collision, a Shape Script can 
take a log of the information on the timing and location of the 
collision and output it. As addressed in Subsection 3.4, the 
Shape Script can obtain a collision between 3D models on the 
3D Engine. Therefore, the code for outputting the timestamps 
and instance names at a collision between 3D models on the 
3D Engine to a log enables checking the timing and location of 
the collision and eliminates the extra work of offline 
re-teaching.

4. Validation of virtualization of entire 
production line

To validate a virtualized whole production line, we launched an 
actual production line. Fig. 10 illustrates the layout drawing of 
the production line for the validation. In the production line in 
Fig. 10, the vertical articulated robot Viper 650 assembles parts 
supplied from the feeding tray.

Fig. 10	 Layout	drawing	of	the	production	line	used	for	validation

We prepared the control program, debugged, calibrated the 
devices, and taught the robot for the assembled and wired 
production line. Then, we recorded person-days for each 
process to compare the person-days with and without the 
virtualization technology. Fig. 11 shows the comparison results.

Fig. 11	 Validation	results	of	production	line	virtualization	effect

Fig. 11 shows that launching the production line required 
about 59 person-days without the virtualization technology. On 
the other hand, launching the production line with the 
virtualization technology took about 26 person-days, and the 
person-days for launching were reduced by approximately 
56%.

We have the most effective person-day saving effect in the 
programming process and reduced about 63% person-days: it 
took about 41 person-days without the virtualization technology 
but about 15 person-days with the virtualization technology, 
including person-days for Shape Scripts. In programming 
without the virtualization technology, each assembly process 
requires designs and implementations for each individual 
function to avoid collision. For the state variable used in all 
processes and the functions covering multiple processes, 
additional designs and implementations are necessary to merge 
all processes. In contrast, the validation proves that 
programming with the virtualization technology eliminates the 
collision issue, and it is possible to work on the whole 
production line from the beginning without designs and 
implementations of individual functions. Substantially, 
removing additional designs and implementations reduces the 
programming person-days for the entire production line.

The second most person-days saved process is debugging of 
actual devices: it took about seven person-days without the 
virtualization technology, but the debugging with the 
virtualization technology reduced about four person-days, 
which accounts for about 43%, including person-days required 

7



for debugging in the virtual space. We debugged in a shorter 
period on the virtual space than using the actual equipment 
since we could operate the robot and peripherals faster. 
Furthermore, we succeeded in reducing the person-days for 
re-debugging: in the virtual space, only resetting of the 
conditions is required, but as for the actual equipment, we need 
to set the robot, peripherals, and parts to the initial conditions. 
After the debugging on the virtual space, the debugging in the 
actual equipment requires necessary tasks only: e.g., 
adjustments on suction and gripping a part. Therefore, we have 
decreased the person-days for debugging in total.

The validation did not include the time required for 
assembly, wiring work, and associated waiting time. Therefore, 
we expect a more substantial reduction in programming and 
debugging in launching an actual production line.

The third most person-days saved process is robot teaching: 
the teaching with the virtualization technology took about 5.5 
person-days, but the teaching without the virtualization 
technology took about nine person-days. The validation 
addresses that the virtualization technology reduced about 39% 
of person-hours. As Subsection 2.1 describes, the operator must 
move the robot slowly to avoid damage to the equipment 
caused by a collision during teaching with the actual 
equipment, but in offline teaching, the operator can operate the 
virtual robot faster in the virtual space. Thus, offline teaching 
and minor adjustments for the actual equipment can save the 
working time on the actual equipment and reduce the teaching 
person-days.

5. Conclusion
We aim to reduce person-days for launching a production line 
and have implemented the production line virtualization 
technology into the factory automation integrated development 
environment, Sysmac Studio. Our virtualization technology 
enables I/O devices, vision sensors, peripherals, and robots to 
operate in the virtual space. Furthermore, we have built the 
simulation programming environment that defines the virtual 
partʼs operations flexibly. The clearance check for all virtual 
devices and parts realizes offline teaching.

We have validated the virtualization technology using the 
actual production line and proved that the virtualization 
technology could reduce the launching person-days by about 
56%.

This study presents that the virtualization technology can 
reduce satisfactory person-days in programming and debugging. 
We will discuss the further reduction using a method other than 
virtualization technology, such as improving a program editor.

The robot teaching process involves most person-days, 

following programming and debugging. We will develop a path 
planning technology that allows automatic path generation by 
only designating the start and end points to reduce person-days 
in offline teaching.

References
1) T. Miyauchi, D. Kobayashi, and K. Fujita, “Virtual Debugging 

System for Manufacturing Equipment Control Software 
Development,” (in Japanese), TOSHIBA Review, vol. 64, no. 5, pp. 
10-13, 2009.

2) Japan Robot Association, Reference Book of Robot System 
Integratorʼs Skills [1st Edition], Ministry of Economy, Trade and 
Industry (2018-5-31), (in Japanese), https://www.meti.go.jp/press/ 
2018/05/20180531008/20180531008-1.pdf (accessed on Jan. 4, 
2021)

3) OMRON Corporation, “Robot Integration System” (2020-02-09), 
https://www.fa.omron.co.jp/product/robotics/lineup/integrated 
controller/ (accessed on Jan. 13, 2021)

4) F. Hosseinpour and H. Hajihosseini, “Importance of Simulation in 
Manufacturing,” World Academy of Science, Engineering and 
Technology 27, 2009, pp. 285-288.

5) K. Mamou, F. Ghorbel, “A simple and efficient approach for 3D 
mesh approximate convex decomposition,” in 16th IEEE Int. Conf. 
on Image Processing (ICIP), 2009, pp. 3501-3504.

6) J.-M. Lien and N. M. Amato, “Approximate convex decomposition 
of polygons,” in Proc. 20th Annual Symposium on Computational 
Geometry, 2004, pp. 17-26.

About the Authors

SHIMAKAWA Haruna
Software Development Dept., Controller Div.
Product Business Division H.Q.
Industrial Automation Company
Specialty:Software Engineering
Affiliated Academic Society:RSJ

IWAMURA Shintaro
Software Development Dept., Controller Div.
Product Business Division H.Q.
Industrial Automation Company
Specialty:Software Engineering
Affiliated Academic Society:RSJ

The	names	of	products	in	the	text	may	be	trademarks	of	each	company.
Windows	 and	 Microsoft.NET	 Framework	 are	 the	 registered	 trademark	 or	
trademark	of	Microsoft	Corporation	in	the	United	States	and	other	countries.

SHIMAKAWA Haruna et al. Production Equipment Virtualization Technology by Integrated Development Environment for Factory Automation

8


