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In recent years, due to soaring labor costs and the spread of a new type of coronavirus, there has been an 
increasing demand to save labor at the production sites. However, the need for industrial robots, especially 
vertical articulated robots, has been increasing as one of the laborsaving measures, but they have not been widely 
used because of the many person-hours and expertise required to generate the motions of the robots that can 
achieve high productivity.

In this study, we developed a fast motion planning technology for a vertically articulated robot. The motion 
planning technology consists of two technologies: path planning and motion acceleration. In the former, we 
reduced the processing time for path planning to 100 ms, which is several seconds per motion in conventional 
technology, by selecting a context-specific algorithm and fast collision checking. In the latter, by optimizing the 
acceleration parameters and path correction to reduce the inertia on the robot joints, the tact time was improved 
by about 20% compared to the robot’s default parameters. To confirm the effectiveness of these technologies, we 
built a bin-picking system. It works in the 3 seconds as much as a person’s tact time without any robot motion 
generation by the user.

1.	 Introduction
In recent years, due to soaring labor costs and the spread of a 
new type of coronavirus, there has been an increasing demand 
to save labor at the production sites. Studies are vigorously 
underway to introduce industrial robots as a method of saving 
labor. Needs are mounting for vertically articulated robots with 
a wide operating range and a high degree of freedom of motion 
to perform tasks in place of or in collaboration with human 
operators. In reality, however, production sites and, in particular, 
small and medium-sized companies, are lagging behind in 
introducing robots. The main factors considered responsible for 
this problem include the time-consuming robot motion 
generation and higher degrees of difficulty in motion generation 
tasks1).

For an industrial robot to perform a task, its motions must be 
generated by performing the so-called teaching task for setting 
the position and posture for the robot to move and the 
parameter adjustment task for motion speed and other settings. 
These are both time-consuming tasks that involve working on 
actual robot operations by trial and error. Moreover, both these 
tasks require expertise and skills, including joint angle settings 
for robot control and torque considerations.

Accordingly, we developed an automatic robot motion 

generation technology that automates the position-posture 
setting and motion parameter adjustment tasks for vertically 
articulated robots. This technology allows users not well versed 
in robots to introduce robots into their production sites. Besides, 
our proposed technology can generate motions at a 
computational time of 100 ms or less per motion; hence, the 
technology supports bin-picking and other applications that 
require motion generation as the need arises.

In what follows, Section 2 presents the challenges to motion 
generation by industrial robots and the development targets, 
Sections 3 and 4 describe the automatic robot motion generation 
technology developed, Section 5 explains a bin-picking 
application implemented based on the development results 
obtained, and Section 6 presents the conclusions and future 
prospects.

2.	 Challenges to robot motion generation and 
technology development targets

2.1	 About robot motion generation
A vertically articulated robot is controlled by the rotation angle 
of each joint servomotor. A robotʼs condition, which consists of 
a set of rotation angles of the respective joints, is called a 
posture. In its most simplistic form, robot motion generation 
can be achieved by specifying the following two postures: one 
being an initial posture (current posture) for the robot to start a 
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motion and the other being a goal posture for it to perform a 
task. This form of control method is called point-to-point (PTP) 
control. However, a PTP-controlled motion simply connects the 
two postures by linear interpolation and may collide with some 
obstacle between the initial posture and the goal posture.

An alternative control method is available and is used to 
specify detailed intermediate postures between the initial 
posture and the goal posture for a robot to perform precise 
motions. This form of control is called continuous-point (CP) 
control. A set consisting of a robotʼs initial and goal postures 
given for CP control and the intermediate postures in between is 
called a path. Fig. 1 shows the differences between a PTP-
controlled motion and a CP-controlled motion.

Fig. 1  PTP motion (red) and CP motion (each square (■) along the green line 
indicates the end-effector’s spatial position.)

Moreover, for the robot to perform an actual motion, it is also 
necessary to specify how the set path should be executed over 
time. This change over time can be made to occur by 
controlling motion parameters, such as servomotor velocity and 
acceleration. Such a path with given motion parameters to be 
executed along the time base is called a trajectory. In other 
words, motion generation of a robot means trajectory generation 
by the robot.

2.2	 Challenges to path generation
A task generally known as teaching is performed to generate 
paths for performing CP control. In this task, a human operator 
manipulates a real robot, using a robot operating device called a 
teaching pendant (TP), to register postures constituting the path 
one by one. Postures given during teaching are also known as 
teaching points.

Generally, the number of teaching points necessary to use a 

robot as production equipment ranges from several tens to 
several hundreds, which may vary depending on the complexity 
and amount of the task. For accurate teaching point setting, the 
robot must be verified for its postures by reducing its motion 
speed or stopping it. Therefore, teaching faces the challenge of a 
large number of person-hours.

Another challenge is that considerable skill is required for 
robot manipulation to make a robot assume postures given as 
teaching points. This challenge arises from the gap between the 
human spatial recognition based on an orthogonal coordinates 
system (real space) consisting of three axes, a longitudinal axis 
(X), a transverse axis (Y), and a vertical axis (Z), as well as the 
robotʼs operation parameter, in other words, its joint rotation 
angle (joint space). Fig. 2 explains this challenge using a 
2-DOF robot moving on a plane as an example.

Fig. 2  Real space vs. Joint space

To move from the initial posture A to the goal posture B 
in real space while avoiding obstacles, the robot must assume 
intermediate postures 1 and 2 on the way to avoid collisions. 
Humans can intuitively estimate the positions of the intermediate 
postures in real space. These positions, however, do not convert 
readily into joint angles for controlling the robot. The TP has a 
function called orthogonal jog operation to translate the robot 
end-effector relative to real-space coordinates, which brings the 
robot manipulation closer to a certain degree to human intuition. 
However, this translation of the end-effector by orthogonal jog 
operation is performed by the robot controller that controls 
each jointʼs movement. Hence, the user has no control over the 
movement of the robotʼs parts (elbow/shoulder) other than the 
end-effector. Therefore, an attempt to rely entirely on orthogonal 
jog operation for teaching results runs the risk of causing 
collisions between the robot and its surrounding environment. 
Besides, the real and joint spaces are in a non-linear relationship, 
which means the existence of regions that are continuous in 
the real space but discontinuous in the joint space. The robot 
controllerʼs computational outputs become indefinite joint values 
in such regions, causing the robot to perform redundant motions 
or stop moving. Thus, an attempt to move the robot over a long 
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distance with the orthogonal jog operation often results in failure 
to obtain the movement as desired by the user. Accordingly, in 
actual teaching, the user must depend on trial and error to change 
each joint rotation angle until obtaining the posture close to the 
desired teaching point to perform a precise alignment task with 
the orthogonal jog operation.

It follows from the above that the current form of robot 
teaching is highly burdensome on users because it must be 
worked on through trial-and-error cycles by a skilled operator 
based on intuition and experience.

2.3	 Challenges to trajectory generation
For a robot to be used as production equipment, it is necessary 
that a path generated by teaching be executed in time to meet 
the userʼs desired takt time. For this purpose, a high-speed 
trajectory must be generated by adjusting the joint rotation 
velocity between the intermediate postures on the path.

The robotʼs joint rotation velocity is controlled by the 
parameters of the maximum velocity value and acceleration. In 
principle, when these parameters are set to a high value, fast 
motion is obtained. However, these parameters must be set to 
the appropriate value that is not excessively high. Otherwise, the 
torque load on each joint servomotor would become high and 
cause the safety device to trip and stop the robot.

As shown below by Equation (1), the torque is affected by 
the mass and the inertia. Hence, to obtain the optimal parameter 
values, the userʼs consideration must extend to the mass and 
posture of the hand mounted on the robot or those of the 
workpiece grasped by the hand.

 τ θ θ θ θ θ θ= + + +M V F G( ) ( , ) ( ) ( )    (1)

τ: Load (torque)
M( θ): Mass-related matrix
V( θ , θ):  The vector representing the centrifugal and Coriolis 

force terms
F( θ): The vector representing the friction force term
G( θ): The vector representing the gravity term

Therefore, if the required takt time cannot be met using the 
recommended values, the user must adjust the parameters by 
trial and error while manipulating the real robot. As is the case 
with teaching, this task is a skill-demanding and time-
consuming one, in other words, a burdensome task for the user, 
posing a challenge.

Another challenge is posed by cases that require path 
readjustments besides motion parameter readjustments to 
achieve a short takt time. For example, in some cases, the loads 
on a robotʼs joints become smaller with the robot operated in an 

arm-retracted posture rather than an arm-extended posture, 
thereby allowing the robot to perform the intended motion at a 
higher speed in a shorter total motion time.

From the above, it follows that the challenge of adjusting 
both the motion parameters and the path by trial and error must 
be addressed to generate a trajectory for the robot to achieve 
high productivity.

2.4	 Technology development targets and evaluation 
environment

We developed an automatic path generation technology and an 
automatic motion acceleration technology to solve the 
challenges to robot motion generation. These developed 
technologies have as their distinction a high computational 
speed of 100 ms per motion. This high speed enables our 
proposed technologies to serve various applications.

The current mainstream use of industrial robots is to transfer 
highly accurately positioned workpieces in a taught fixed 
motion, taking advantage of high motion repeatability. However, 
in some applications of picking randomly piled workpieces, 
prior fixing of the motion conditions is impossible. An attempt 
to address such cases by teaching would require that a vast 
number of motion patterns be registered for conditional 
branching, posing a difficult challenge in the application to 
robots. Conversely, our proposed technologies provide a 
sufficiently high speed to generate the robot motion during the 
execution of its current motion and hence can solve this 
challenge through the combined use with 3D sensors or 
recognition technology. In other words, our proposed 
technologies not only automate teaching, a task currently 
performed manually, but also enable robots to be used in 
applications so far considered difficult to address by teaching.

As shown in Fig. 3, the target value of 100 ms was set for a 
bin-picking task set as the target task.

Fig. 3  Time chart for bin-picking (as of the time of development target setting)

The 3D sensor for workpiece recognition may be installed by 
either of the following two methods: fixed installation above 
randomly piled workpieces or mounting on the robot end-
effector. The present study is based on the former method, 
which enables faster execution of the task without the need for 
motions for image capturing.

The bin-picking action consists of a Pick motion for picking 
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a workpiece from a pile of randomly piled workpieces and a 
Place motion for placing the picked workpiece in the correct 
position and orientation. Assuming that a cycle time equivalent 
to that achievable by a human operator is set as the target, this 
action must be performed and completed within 3 to 4 seconds 
per workpiece. For the picking to be performed automatically, 
the Pick motion and the Place motion must be generated by 
selecting the workpiece to be picked and determining how to 
grasp the workpiece (grasp posture estimation) after the 
measurement and recognition of randomly piled workpieces by 
the 3D sensor. However, during the Pick motion, the robot 
comes between the pile of randomly piled workpieces and the 
sensor installed above, occluding the sight of the workpieces 
from the sensor. Therefore, the processing from measurement to 
Pick/Place motion generation must be fully completed within 
the 1.5-second duration for the Place motion. The 3D sensor for 
robots, up-to-date as of the development target setting, took 
1,100 ms for measurement and recognition. Besides, the grasp 
posture estimation technology under development at OMRON 
back then took 50 ms for computation. Hence, the total motion 
generation time available for the Pick and Place motions was 
350 ms. Then, based on the time required for the other 
overhead, including communication, the motion generation time 
per motion was set to 100 ms.

3.	 Automatic path generation technology
3.1	 Related studies
Automatic path/trajectory generation technology for robots is 
called path/trajectory planning technology and has been the 
subject of many previous studies2). Classical approaches include 
the potential approach3) and the cell decomposition approach4). 
Among modern approaches are the random sampling method5-9) 
and approaches that handle a path/trajectory as an optimization 
problem10-12). In classical approaches, a robotʼs passable spatial 
position is searched based on the real space and then converted 
into a corresponding robot path. Besides the high computational 
cost for search and conversion processing, these approaches are 
problematic in generating discontinuous solutions not 
executable because of the non-linearity between the real and 
joint spaces. Though low in computational cost and 
advantageous in that it theoretically always generates a solution, 
the random sampling method has the drawback of considerable 
variability in computational time and generated path depending 
on the given context. While it has a stable computational time 
and generates an optimal path for a set cost, the optimization 
approach takes a longer computational time than the random 
sampling method and may fail in path generation.

3.2	 Evaluation and problem analysis of existing technologies
Approaches classified as a random sampling method seemed 
promising because of their low computational cost and high 
probability of successful path generation. This subsection 
explains the random sampling method, taking as an example the 
rapidly exploring random trees (RRT) algorithm known as the 
most basic algorithm5). The RRT algorithm performs a search by 
growing a tree from an initial posture xinit toward a goal posture 
xgoal, as shown in Fig. 4:

Fig. 4  Outline of the RRT approach

Because this algorithm performs the search in the joint space, 
each node in the figure represents a vector corresponding to a 
posture taken by the robot. In a vertically articulated robot with 
six joints, the joint space and the vectors are six-dimensional. 
The search is performed according to the following steps:

1. Perform sampling to pick a random node xrand and find its 
neighbor node xnear on the existing tree. The upper pane of 
Fig. 4 shows the results of the initial search, where xnear = 
xinit.

2. Next, set a new node unew at a certain distance traveled 
from xnear to xrand.

3. If no collision with any obstacle occurs between unew and 
xnear, add the node unew and a branch connecting xnear and 
unew to the tree.

Although the sampling method and the tree growth method 
may vary by algorithm, the basic processing principle is 
commonly shared.

From among the previous studiesʼ algorithms, well-evaluated 
ones were selected and evaluated. Table 1 shows the algorithms 
selected and their outlines:
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Table 1  Outlines of the selected algorithms

Algorithm Outline

RRT5)
The approach illustrated in Fig. 4. Xgoal was sampled with a 
probability of 5% from among the sampling points to bias 
the implementation used this time for the evaluation.

RRT-Connect7)

This algorithm generates one tree from each of both xinit 
and xgoal to perform the search in the other tree’s direction, 
thereby improving the search efficiency in obstacle-sparse 
areas.

TRRT 
(Transition-based 
RRT)8)

If both unew and xnear are at a within-threshold distance from 
any obstacle, this algorithm avoids adding unew to the tree to 
prevent any proximate obstacle from impeding the tree’s 
growth.

BIT* 
(Batch Informed 
Trees Star)9)

This algorithm sets a subspace containing xinit and xgoal and 
only searches inside, thereby improving the search 
efficiency.

For the evaluation of each algorithm, a path was generated 
from the initial posture to the goal posture under the conditions 
in Fig. 5 to measure the computational time and the success rate.

Fig. 5  Evaluation environment

The first to third joints of the vertically articulated robot were 
used to change the end-effectorʼs spatial position, while the 
fourth to sixth joints were used to change the end-effectorʼs 
orientation and tilt. In other words, the robot motion was 
determined almost entirely based on the first to third joints. 
Accordingly, three obstacles were placed in between the initial 
posture and the goal posture to impede the robot motion along 
the first joint(Fig. 5(c)), the second joint(Fig. 5(b)), and the 
third joint(Fig. 5(a)), respectively. If these conditions did not 
prevent path generation, the path planning algorithm could be 
regarded as robust against the obstruction of the motion along 
any of the first to third joints and highly versatile regarding the 
robot motion. As far as the bin-picking action set for the target 
computational time was concerned, successful avoidance of 
colliding with the obstacle indicated by Fig. 5(a) would make 
the algorithm sufficiently acceptable. We, however, set the 
above conditions, considering the algorithmʼs versatility in 
application to generating motions other than those for bin-
picking actions.

For our evaluation, we used a computer equipped with an 
Intel® Core™ i5-4310U CPU running at 2.0 GHz. Considering 
the inherent nature of random search, we set the upper limit of 
computational time to 10 seconds and measured the success rate 
per 100 times of path generation and the computational time per 

success (Table 2). As a result, all the approaches evaluated 
showed a high path generation success rate of 90 percent or 
above but considerable excess in computational time from the 
target value of 100 ms or below.

Table 2  Evaluation results for the existing algorithms

Algorithm
Computational time (ms)

Success rate (%)
Average Max.

RRT 826 2086   97

RRT-Connect 761 1629   99

TRRT 892 2047   94

BIT* 696 2115 100

For algorithm improvement, we performed a problem 
analysis of the random sampling method. The computational 
time t of the random sampling method can be expressed by 
Equation (2):

 t t i t d
d

ts nn cc
i

n

= + ⋅ + ⋅⎛
⎝⎜

⎞
⎠⎟=

∑ Δ1
 (2)

where
n:  The number of sampling runs until the achievement of the 

goal posture;
ts: The time required for sampling point generation;
tnn: The neighbor node search time per sampling point;
d:  The distance between the node added and its neighbor 

node;
Δd: The collision detection interval; and
tcc: The time per collision detection.

Therefore, the number of sampling runs until the achievement 
of the goal posture and the computational time per run must be 
reduced to obtain a short computational time. As shown by the 
experiment results in Table 2, the number of sampling runs, n, 
and the required sampling computational time per run were 
10,000 times and 0.08 ms on average, respectively.

3.3	 Improvement of the search algorithm
An analysis that we performed for the existing algorithmsʼ 
search processing revealed that the number of sampling runs n 
increased markedly at the inlet/outlet to/from the container or 
the shelf. For a simple illustration of this problem, Fig. 6 shows 
a 2-DOF robotʼs joint space and real space. Even an aperture 
wide open in the real space would turn into one with a very 
narrow robotʼs passable area in the joint space, showing the 
difficulty in finding by random search the path from the initial 
posture indicated in orange to the goal posture indicated in 
green. This problem is known as the bug trap problem specific 
to random sampling13).
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Fig. 6  Typical bug trap (two dimensional)

Known approaches to addressing this kind of problem 
include methods for performing searches using real-space data. 
Among typical algorithms is the Exploration/Exploitation Tree 
(EET) algorithm, which uses a virtual sphere in the real space to 
perform searches and feed back the results to the joint space14). 
This method performs searches in directions moving away from 
real-space obstacles and shows high search performance for 
bug-trap-like inlets/outlets. For non-bug-trap-like areas, 
however, its performance significantly deteriorates because of 
the lack of clues for the search. On the other hand, among the 
algorithms evaluated in Table 2, the RRT-Connect algorithm 
shows high performance for non-bug-trap-like areas. Designed 
in the expectation of obstacle-sparse areas in the search range, 
this algorithm works on the principle of generating one tree 
from both the initial posture and the goal posture to perform the 
search in the direction of the other tree. Hence, thanks to the 
two trees that quickly connect to each other in an obstacle-
sparse area, the RRT-Connect algorithm provides high search 
performance.

Then, we devised a new algorithm that uses both of these 
two algorithms. In other words, when it finds itself stuck in a 
bug trap-like condition, our new algorithm uses the EET 
algorithm. Otherwise, it uses the RRT-Connect algorithm for 
path generation. As already shown by the example in Fig. 5, a 
bug trap may occur between a robot end-effector and a 
container. Bug traps can also occur when the joint value reaches 
or exceeds its upper limit or when a collision occurs between a 
non-end-effector part and an obstacle. Accordingly, our devised 
algorithm checks for the causative factors of all these bug traps.

This improvement of the search algorithm led to reducing the 
number of sampling runs, n, to 200 times or below.

3.4	 Improvement of collision detection processing
Our next aim was to reduce the sampling computation time per 
run. A profile analysis of the computational time found that 
collision detection was responsible for approximately 90 percent 
of the processing time. Then, we considered reducing the time 
required for collision detection, (d ⁄ Δd)·tcc.

Collision detection is performed using a 3D simulation based 
on the CAD data of a robot and its surrounding obstacles. As 
shown by Equation (2), the method commonly used is to 
discretize the change in the joint angle, d, between the 
intermediate postures on the path by Δd and check for a 
collision between the robot and any obstacle for each 
discretized posture taken by the robot in the simulation space15). 
Because the distance d between the intermediate postures is 
constant, the number of determinations can be reduced when the 
discretization rate is lowered by increasing the collision 
detection interval Δd. However, collision risks may be 
overlooked. Accordingly, we devised an algorithm that performs 
collision detection coarsely when the robot is distant from any 
obstacle and finely when they are near to each other as shown in 
Fig. 7.

Fig. 7  Conventional collision detection method vs. our proposed method

With this method, we reduced the number of determinations, 
d ⁄Δd, without compromising collision detection accuracy.

Furthermore, we aimed at reducing the computational time 
per run of collision detection, tcc. CAD data used for collision 
detection are furnished by the robot manufacturer or prepared 
by the user for equipment design and hence provided as high-
accuracy data with many meshes ranging from several tens of 
thousands to several hundreds of thousands. Because the 
computational time per run increases in proportion to this 
number of meshes, desirable CAD data are those with the 
number of meshes reduced while retaining the geometric 
features. Besides, collision detection processing is known to 
become complicated when the model used has a concave shape. 
However, collision detection processing can be accelerated 
when the model used consists of shapes, each represented as a 
convex hull, and allows collision detection based on the 
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distances between the center positions of the shapes16). 
Considering the above, we chose to perform collision detection 
processing after reducing the number of meshes in the CAD 
data input to the simulation space for path planning and 
convex-decomposing the shape model. Fig. 8 shows an example 
of the shape simplification of a robotʼs elbow part.

Fig. 8  Typical shape simplification

We reduced the computational time per sampling run to 0.05 
ms or below by incorporating the above coarse-fine search and 
model simplification into collision detection.

3.5	 Evaluation of the automatic path generation technology
We performed an evaluation under the same conditions shown 
in Table 2, albeit reflecting the search algorithm and collision 
detection processing developed. Table 3 shows the evaluation 
results. The results for RRT-Connect are copied from Table 2.

Table 3  Evaluation results for the method developed

Algorithm
Computational time (ms)

Success rate (%)
Average Max.

Out proposed method 28.9 90.4 100

RRT-Connect 761 1629 99

The above confirms that the search algorithm reduced the 
number of sampling runs and accelerated collision detection 
processing, thereby leading to the achievement of the target 
computational time of 100 ms.

4.	 Automatic motion acceleration technology
4.1	 Related studies
For a robot to achieve a short motion time, it is necessary to 
eliminate the redundancy in the generated path and appropriately 
set the motion parameters. One of the technologies meeting 
such a requirement is trajectory planning technology, which was 
mentioned in reference to the related studies of automatic path 
generation technology. Trajectory planning technology optimizes 
the robot-to-obstacle distance, the end-effectorʼs orientation, and 
the torque on the joint as the parameters of the cost function, 

besides the robot path. Well-known technologies of this kind 
include Stochastic Trajectory Optimization for Motion Planning 
(STOMP)11) and Trajectory Optimization for Motion Planning 
(TrajOpt)12). The distinction of STOMP is that it performs the 
optimization calculation and adds random noise to the obtained 
results to reduce convergence to local solutions and improve 
the efficiency of optimum solution search. Meanwhile, what 
characterizes TrajOpt is that it consecutively performs convex 
optimization to obtain a short computational time. However, a 
preliminary evaluation revealed that even these efficient methods 
require a computational time of several seconds to several tens 
of seconds and are unsuitable to meet the development target of 
100 ms. Besides, these methods assume the predetermination of 
the number of intermediate posture nodes and have the problem 
of being unlikely to generate a solution with too few nodes and 
frequently accelerating and decelerating the generated motion 
with too many nodes, resulting in too long a motion time.

Thus, an attempt to solve the combination of path generation/
optimization and motion parameter optimization as a single 
optimization problem would require considerable time for the 
convergence of the many parameters having a tradeoff 
relationship with one another and would result in complicated 
settings. Therefore, to establish a fast optimization technology 
for motion parameters, we adopted a procedure that first 
optimizes the motion parameters based on a path generated 
using our path generation technology and then corrects the 
regions likely to affect the motion speed negatively.

4.2	 Motion parameter optimization
For a robot to perform a fast motion, the two parameters of 
velocity θ  and acceleration θ  must be maximized within a range 
not exceeding the robotʼs torque limit. This adjustment is 
usually performed by tuning the velocity parameter with the 
acceleration fixed. The torque on the robotʼs joint is expressed 
by the sum of inertia torque M(θ)θ  and friction torque F( θ ) as 
shown by Equation (1). However, in a vertically articulated 
robot with a high motion speed, inertia torque has the most 
significant influence. As Equation (1) shows, inertia torque 
depends on the magnitude of acceleration, while friction torque 
depends on the magnitude of velocity. It follows then that the 
torque load on the vertically articulated robotʼs joint becomes 
the largest in the timing that acceleration or deceleration was 
generated, as shown in Fig. 9:
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(a) Relationship among velocity, 
acceleration, and torque

(b) Breakdown of torque

Fig. 9  Relationship of velocity and acceleration to torque on the joint

The above shows that contrary to the common practice, 
acceleration adjustment is more effective than velocity 
adjustment. Thus, we chose to accelerate the robot motion by 
adjusting the robotʼs acceleration with its velocity fixed to either 
a user-specified desired value or its maximum specification 
value.

Acceleration adjustments are made according to the 
following steps:

1. For each joint, using a path, a given maximum velocity, 
and the 50 percent value of the robotʼs spec acceleration, 
generate a trajectory and discretize it millisecond by 
millisecond to calculate the torque on the joint.

2. From the time series data of the calculated joint torques, 
identify the peak for each joint. If for each joint, the 
difference between the torque and the torque limit at the 
peak position is within the threshold, and if no joint 
exceeds the torque limit, set their accelerations as the 
optimal values.

3. If, for each joint, the peak torque exceeds the torque limit 
or their difference exceeds the threshold, adjust the 
acceleration until obtaining a value meeting the condition 
by binary search. Return to Step 1.

4.3	 Path correction
Assuming that the robot motion is accelerated using the 
acceleration parameter, the acceleration cannot be set 
sufficiently high if the M(θ) term of the inertia torque M(θ)θ  has 
a large value. An M(θ) term with a large value means that the 
path has on it a posture in which the joint rotation center-to-
mass point distance r shown in Fig. 10 becomes long and 
causes the inertia to become significant.

(a) Path with a large inertia (b) Path with a small inertia

Fig. 10  Path with a large inertia path vs. path with a small inertia

When the path is such that it causes large inertia, the 
acceleration can be further increased if the robotʼs posture can 
be corrected to obtain small inertia within a range where the 
original motion time will not be exceeded. However, an 
evaluation of whether changes can be made to all the path 
intervals and all the joints would be a process similar to the 
optimization problem-solving method mentioned in reference to 
the related studies, resulting in a long computational time.

Accordingly, we have chosen to limit the search range 
focusing on each jointʼs first joint and limit the path-change 
regions to along the jointʼs second and third joints to identify 
regions correctable in a short time. The reason for focusing on 
the first joint is that the effect of reducing the inertia on an joint 
increases proportionally to the jointʼs proximity to the root of a 
vertically articulated robot. Meanwhile, the reason for limiting 
changes to along the second and third joints is that the inertia on 
the first joint is attributable for the most part to the influence of 
the second and third joints. The correction method is as 
explained below:

1. First, from along the path, identify a continuous interval 
rate-controlled to the first joint as the interval to be 
corrected.

2. Based on the trajectory data, identify from the identified 
interval an area where the amount of change in the first 
joint is sufficiently large and that no motion deceleration 
occurs even after the intermediate points for folding the 
arm are added by moving the second and third joints to 
the interval center.

3. Finally, set the amount of change in the second and third 
joints so that the time required to undo the folded second 
and third joints will not exceed the time required for the 
first joint to move through the corrected interval.

With the above method, the path can be corrected to obtain 
small inertia. By the interval rate-controlled to the first joint, we 
mean the interval in which, among the amounts of time required 
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for the changes made to the respective joints between 
neighboring intermediate points on the path, the amount of time 
for the first joint is the largest.

4.4	 Effects of accelerated robot motion
A robotʼs motion speed can be boosted up to the limit using an 
alternating cycle of acceleration maximization through motion 
parameter optimization and inertia minimization through path 
correction. What follows in this subsection shows the results of 
the evaluation we performed. The experiment cases were the 
five patterns of motion shown in Fig. 11, in which the robotʼs 
end-effector exited one container and entered another during a 
180° movement of the robotʼs first joint. A comparison was 
made of the motion times before and after the application of the 
motion acceleration technology.

Fig. 11  Evaluation patterns for the motion acceleration technology

The motion times before and after the technologyʼs 
application were compared as follows to minimize the influence 
of the variation in the actual robot motion: the motion was 
performed 1,000 times before and after the technologyʼs 
application, respectively; for each run, the motion time was 
measured; the motion time before the technologyʼs application 
was evaluated by the minimum value in the results from the 
1,000 runs; the motion time after the technologyʼ application 
was evaluated similarly but by the maximum value. For path 
calculation and motion optimization calculation, we used the 
same computer as used to evaluate the existing path planning 
algorithms. Table 4 shows the motion-time improvement ratio 
and the computational time, including path planning.

Table 4  Evaluation results for accelerated robot motion

Experiment case Motion-time 
improvement ratio (%)

Maximum computational 
time (ms)

A→a 24.7 95.1

B→b 19.4 97.1

C→c 28.1 96.5

D→d 28.3 85.3

E→e 23.3 90.0

The above confirms that a motion-time improvement ratio of 
approximately 20 percent was achieved with a computational 
time of 100 ms or below.

5.	 Demonstration system implemented
5.1	 System overview
We combined the automatic robot motion generation technology 
developed for the present study with a 3D sensor to develop 
a bin-picking demonstration system. The robot used was 
OMRONʼs Viper 650, while the sensor used for recognition 
processing was the robot-mountable 3D sensor earlier used 
for development target estimation. Fig. 12 shows the external 
appearance of the demonstration system.

Fig. 12  Demonstration system developed

The demonstration system served the bin-picking application 
without needing prior teaching or parameter adjustment except 
registering a prescribed set of data via the GUI. The data 
required to be registered were as follows:

• Sensor position
• Position of the tray containing randomly piled workpieces
• Position of the tray for aligned placement of workpieces
• Coordinates data for aligned placement of workpieces
• CAD shape of the workpiece to be picked
• Robot handʼs shape and specifications
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These data are only those necessary for the equipment 
design. No special data are required for robot motion 
generation.

5.2	 Performance evaluation
We evaluated the takt times achieved by the demonstration 
system when it performed bin picking of the six types of 
electronic parts. These takt times were each obtained by 
averaging 20 measurements of time that the system took to 
perform the Pick and Place motions pair shown in Fig. 3. The 
time from sensing to motion generation during the initial run 
was excluded from the evaluation. Table 5 shows the evaluation 
results.

Table 5  Demonstration system’s takt time

Workpiece (dimensions in cm) Takt time (s)

A (2×3×1) 2.9

B (3×3×2) 2.7

C (15×1×0.5) 2.9

D (1×1×1) 2.9

E (1×0.5×1) 2.9

F (1×1×0.5) 3.0

These results were achieved with all the required steps, from 
sensing to motion generation, completing within the Place 
motionʼs duration and without the robot stopped for 
computational processing purposes. The above confirms that the 
demonstration system successfully performed the picking task at 
a takt time equivalent to that achievable by a human operator.

6.	 Conclusions
We addressed solving the problem of the difficulty in motion 
generation for vertically articulated robots, one of the 
introductory impediments of robots into production sites. We 
have developed an automatic robot motion generation 
technology that automates the position-posture setting and 
motion parameter adjustment tasks for robots. The automation 
of the former task enabled context-specific algorithm selection 
and efficient collision detection processing, resulting in the 
ability to perform motion generation in a shorter time. The 
latterʼs automation has produced the ability to maximize the 
robot motion speed through the repetitive cycle of acceleration 
parameter optimization, highly effective on the robotʼs motion 
time, and path correction for inertia reduction. These 
automation technologies are compatible with high-speed 
processing and hence applicable to the bin picking that requires 
much teaching. The bin-picking demonstration system built this 
time achieved a takt time equivalent to that achievable by a 
human operator. The development results obtained will be 

commercialized as bin-picking applications or robot teaching 
tools.

For the future, we are considering an upgrade to the 
automatic generation of simultaneous and collaborative motions 
among multiple robots to support more complex robot systems.
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