
KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

Contact : KOJIMA Takeshi takeshi.kojima@omron.com

Fast Motion Planning Technology for
Vertical Articulated Robot
KOJIMA Takeshi, HAYASHI Kennosuke, FUJII Haruka and HOSOMI Shinichi

In recent years, due to soaring labor costs and the spread of a new type of coronavirus, there has been an
increasing demand to save labor at the production sites. However, the need for industrial robots, especially
vertical articulated robots, has been increasing as one of the laborsaving measures, but they have not been widely
used because of the many person-hours and expertise required to generate the motions of the robots that can
achieve high productivity.

In this study, we developed a fast motion planning technology for a vertically articulated robot. The motion
planning technology consists of two technologies: path planning and motion acceleration. In the former, we
reduced the processing time for path planning to 100 ms, which is several seconds per motion in conventional
technology, by selecting a context-specific algorithm and fast collision checking. In the latter, by optimizing the
acceleration parameters and path correction to reduce the inertia on the robot joints, the tact time was improved
by about 20% compared to the robot’s default parameters. To confirm the effectiveness of these technologies, we
built a bin-picking system. It works in the 3 seconds as much as a person’s tact time without any robot motion
generation by the user.

1.	 Introduction
In recent years, due to soaring labor costs and the spread of a
new type of coronavirus, there has been an increasing demand
to save labor at the production sites. Studies are vigorously
underway to introduce industrial robots as a method of saving
labor. Needs are mounting for vertically articulated robots with
a wide operating range and a high degree of freedom of motion
to perform tasks in place of or in collaboration with human
operators. In reality, however, production sites and, in particular,
small and medium-sized companies, are lagging behind in
introducing robots. The main factors considered responsible for
this problem include the time-consuming robot motion
generation and higher degrees of difficulty in motion generation
tasks1).

For an industrial robot to perform a task, its motions must be
generated by performing the so-called teaching task for setting
the position and posture for the robot to move and the
parameter adjustment task for motion speed and other settings.
These are both time-consuming tasks that involve working on
actual robot operations by trial and error. Moreover, both these
tasks require expertise and skills, including joint angle settings
for robot control and torque considerations.

Accordingly, we developed an automatic robot motion

generation technology that automates the position-posture
setting and motion parameter adjustment tasks for vertically
articulated robots. This technology allows users not well versed
in robots to introduce robots into their production sites. Besides,
our proposed technology can generate motions at a
computational time of 100 ms or less per motion; hence, the
technology supports bin-picking and other applications that
require motion generation as the need arises.

In what follows, Section 2 presents the challenges to motion
generation by industrial robots and the development targets,
Sections 3 and 4 describe the automatic robot motion generation
technology developed, Section 5 explains a bin-picking
application implemented based on the development results
obtained, and Section 6 presents the conclusions and future
prospects.

2.	 Challenges to robot motion generation and
technology development targets

2.1	 About robot motion generation
A vertically articulated robot is controlled by the rotation angle
of each joint servomotor. A robotʼs condition, which consists of
a set of rotation angles of the respective joints, is called a
posture. In its most simplistic form, robot motion generation
can be achieved by specifying the following two postures: one
being an initial posture (current posture) for the robot to start a

1

OMRON TECHNICS Vol.53.012EN 2021.6

motion and the other being a goal posture for it to perform a
task. This form of control method is called point-to-point (PTP)
control. However, a PTP-controlled motion simply connects the
two postures by linear interpolation and may collide with some
obstacle between the initial posture and the goal posture.

An alternative control method is available and is used to
specify detailed intermediate postures between the initial
posture and the goal posture for a robot to perform precise
motions. This form of control is called continuous-point (CP)
control. A set consisting of a robotʼs initial and goal postures
given for CP control and the intermediate postures in between is
called a path. Fig. 1 shows the differences between a PTP-
controlled motion and a CP-controlled motion.

Fig. 1  PTP motion (red) and CP motion (each square (■) along the green line
indicates the end-effector’s spatial position.)

Moreover, for the robot to perform an actual motion, it is also
necessary to specify how the set path should be executed over
time. This change over time can be made to occur by
controlling motion parameters, such as servomotor velocity and
acceleration. Such a path with given motion parameters to be
executed along the time base is called a trajectory. In other
words, motion generation of a robot means trajectory generation
by the robot.

2.2	 Challenges to path generation
A task generally known as teaching is performed to generate
paths for performing CP control. In this task, a human operator
manipulates a real robot, using a robot operating device called a
teaching pendant (TP), to register postures constituting the path
one by one. Postures given during teaching are also known as
teaching points.

Generally, the number of teaching points necessary to use a

robot as production equipment ranges from several tens to
several hundreds, which may vary depending on the complexity
and amount of the task. For accurate teaching point setting, the
robot must be verified for its postures by reducing its motion
speed or stopping it. Therefore, teaching faces the challenge of a
large number of person-hours.

Another challenge is that considerable skill is required for
robot manipulation to make a robot assume postures given as
teaching points. This challenge arises from the gap between the
human spatial recognition based on an orthogonal coordinates
system (real space) consisting of three axes, a longitudinal axis
(X), a transverse axis (Y), and a vertical axis (Z), as well as the
robotʼs operation parameter, in other words, its joint rotation
angle (joint space). Fig. 2 explains this challenge using a
2-DOF robot moving on a plane as an example.

Fig. 2  Real space vs. Joint space

To move from the initial posture A to the goal posture B
in real space while avoiding obstacles, the robot must assume
intermediate postures 1 and 2 on the way to avoid collisions.
Humans can intuitively estimate the positions of the intermediate
postures in real space. These positions, however, do not convert
readily into joint angles for controlling the robot. The TP has a
function called orthogonal jog operation to translate the robot
end-effector relative to real-space coordinates, which brings the
robot manipulation closer to a certain degree to human intuition.
However, this translation of the end-effector by orthogonal jog
operation is performed by the robot controller that controls
each jointʼs movement. Hence, the user has no control over the
movement of the robotʼs parts (elbow/shoulder) other than the
end-effector. Therefore, an attempt to rely entirely on orthogonal
jog operation for teaching results runs the risk of causing
collisions between the robot and its surrounding environment.
Besides, the real and joint spaces are in a non-linear relationship,
which means the existence of regions that are continuous in
the real space but discontinuous in the joint space. The robot
controllerʼs computational outputs become indefinite joint values
in such regions, causing the robot to perform redundant motions
or stop moving. Thus, an attempt to move the robot over a long

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

2

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

distance with the orthogonal jog operation often results in failure
to obtain the movement as desired by the user. Accordingly, in
actual teaching, the user must depend on trial and error to change
each joint rotation angle until obtaining the posture close to the
desired teaching point to perform a precise alignment task with
the orthogonal jog operation.

It follows from the above that the current form of robot
teaching is highly burdensome on users because it must be
worked on through trial-and-error cycles by a skilled operator
based on intuition and experience.

2.3	 Challenges to trajectory generation
For a robot to be used as production equipment, it is necessary
that a path generated by teaching be executed in time to meet
the userʼs desired takt time. For this purpose, a high-speed
trajectory must be generated by adjusting the joint rotation
velocity between the intermediate postures on the path.

The robotʼs joint rotation velocity is controlled by the
parameters of the maximum velocity value and acceleration. In
principle, when these parameters are set to a high value, fast
motion is obtained. However, these parameters must be set to
the appropriate value that is not excessively high. Otherwise, the
torque load on each joint servomotor would become high and
cause the safety device to trip and stop the robot.

As shown below by Equation (1), the torque is affected by
the mass and the inertia. Hence, to obtain the optimal parameter
values, the userʼs consideration must extend to the mass and
posture of the hand mounted on the robot or those of the
workpiece grasped by the hand.

 τ θ θ θ θ θ θ= + + +M V F G() (,) () ()   (1)

τ: Load (torque)
M(θ): Mass-related matrix
V(θ , θ): The vector representing the centrifugal and Coriolis

force terms
F(θ): The vector representing the friction force term
G(θ): The vector representing the gravity term

Therefore, if the required takt time cannot be met using the
recommended values, the user must adjust the parameters by
trial and error while manipulating the real robot. As is the case
with teaching, this task is a skill-demanding and time-
consuming one, in other words, a burdensome task for the user,
posing a challenge.

Another challenge is posed by cases that require path
readjustments besides motion parameter readjustments to
achieve a short takt time. For example, in some cases, the loads
on a robotʼs joints become smaller with the robot operated in an

arm-retracted posture rather than an arm-extended posture,
thereby allowing the robot to perform the intended motion at a
higher speed in a shorter total motion time.

From the above, it follows that the challenge of adjusting
both the motion parameters and the path by trial and error must
be addressed to generate a trajectory for the robot to achieve
high productivity.

2.4	 Technology development targets and evaluation
environment

We developed an automatic path generation technology and an
automatic motion acceleration technology to solve the
challenges to robot motion generation. These developed
technologies have as their distinction a high computational
speed of 100 ms per motion. This high speed enables our
proposed technologies to serve various applications.

The current mainstream use of industrial robots is to transfer
highly accurately positioned workpieces in a taught fixed
motion, taking advantage of high motion repeatability. However,
in some applications of picking randomly piled workpieces,
prior fixing of the motion conditions is impossible. An attempt
to address such cases by teaching would require that a vast
number of motion patterns be registered for conditional
branching, posing a difficult challenge in the application to
robots. Conversely, our proposed technologies provide a
sufficiently high speed to generate the robot motion during the
execution of its current motion and hence can solve this
challenge through the combined use with 3D sensors or
recognition technology. In other words, our proposed
technologies not only automate teaching, a task currently
performed manually, but also enable robots to be used in
applications so far considered difficult to address by teaching.

As shown in Fig. 3, the target value of 100 ms was set for a
bin-picking task set as the target task.

Fig. 3  Time chart for bin-picking (as of the time of development target setting)

The 3D sensor for workpiece recognition may be installed by
either of the following two methods: fixed installation above
randomly piled workpieces or mounting on the robot end-
effector. The present study is based on the former method,
which enables faster execution of the task without the need for
motions for image capturing.

The bin-picking action consists of a Pick motion for picking

3

a workpiece from a pile of randomly piled workpieces and a
Place motion for placing the picked workpiece in the correct
position and orientation. Assuming that a cycle time equivalent
to that achievable by a human operator is set as the target, this
action must be performed and completed within 3 to 4 seconds
per workpiece. For the picking to be performed automatically,
the Pick motion and the Place motion must be generated by
selecting the workpiece to be picked and determining how to
grasp the workpiece (grasp posture estimation) after the
measurement and recognition of randomly piled workpieces by
the 3D sensor. However, during the Pick motion, the robot
comes between the pile of randomly piled workpieces and the
sensor installed above, occluding the sight of the workpieces
from the sensor. Therefore, the processing from measurement to
Pick/Place motion generation must be fully completed within
the 1.5-second duration for the Place motion. The 3D sensor for
robots, up-to-date as of the development target setting, took
1,100 ms for measurement and recognition. Besides, the grasp
posture estimation technology under development at OMRON
back then took 50 ms for computation. Hence, the total motion
generation time available for the Pick and Place motions was
350 ms. Then, based on the time required for the other
overhead, including communication, the motion generation time
per motion was set to 100 ms.

3.	 Automatic path generation technology
3.1	 Related studies
Automatic path/trajectory generation technology for robots is
called path/trajectory planning technology and has been the
subject of many previous studies2). Classical approaches include
the potential approach3) and the cell decomposition approach4).
Among modern approaches are the random sampling method5-9)
and approaches that handle a path/trajectory as an optimization
problem10-12). In classical approaches, a robotʼs passable spatial
position is searched based on the real space and then converted
into a corresponding robot path. Besides the high computational
cost for search and conversion processing, these approaches are
problematic in generating discontinuous solutions not
executable because of the non-linearity between the real and
joint spaces. Though low in computational cost and
advantageous in that it theoretically always generates a solution,
the random sampling method has the drawback of considerable
variability in computational time and generated path depending
on the given context. While it has a stable computational time
and generates an optimal path for a set cost, the optimization
approach takes a longer computational time than the random
sampling method and may fail in path generation.

3.2	 Evaluation and problem analysis of existing technologies
Approaches classified as a random sampling method seemed
promising because of their low computational cost and high
probability of successful path generation. This subsection
explains the random sampling method, taking as an example the
rapidly exploring random trees (RRT) algorithm known as the
most basic algorithm5). The RRT algorithm performs a search by
growing a tree from an initial posture xinit toward a goal posture
xgoal, as shown in Fig. 4:

Fig. 4  Outline of the RRT approach

Because this algorithm performs the search in the joint space,
each node in the figure represents a vector corresponding to a
posture taken by the robot. In a vertically articulated robot with
six joints, the joint space and the vectors are six-dimensional.
The search is performed according to the following steps:

1. Perform sampling to pick a random node xrand and find its
neighbor node xnear on the existing tree. The upper pane of
Fig. 4 shows the results of the initial search, where xnear =
xinit.

2. Next, set a new node unew at a certain distance traveled
from xnear to xrand.

3. If no collision with any obstacle occurs between unew and
xnear, add the node unew and a branch connecting xnear and
unew to the tree.

Although the sampling method and the tree growth method
may vary by algorithm, the basic processing principle is
commonly shared.

From among the previous studiesʼ algorithms, well-evaluated
ones were selected and evaluated. Table 1 shows the algorithms
selected and their outlines:

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

4

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

Table 1  Outlines of the selected algorithms

Algorithm Outline

RRT5)
The approach illustrated in Fig. 4. Xgoal was sampled with a
probability of 5% from among the sampling points to bias
the implementation used this time for the evaluation.

RRT-Connect7)

This algorithm generates one tree from each of both xinit
and xgoal to perform the search in the other tree’s direction,
thereby improving the search efficiency in obstacle-sparse
areas.

TRRT
(Transition-based
RRT)8)

If both unew and xnear are at a within-threshold distance from
any obstacle, this algorithm avoids adding unew to the tree to
prevent any proximate obstacle from impeding the tree’s
growth.

BIT*
(Batch Informed
Trees Star)9)

This algorithm sets a subspace containing xinit and xgoal and
only searches inside, thereby improving the search
efficiency.

For the evaluation of each algorithm, a path was generated
from the initial posture to the goal posture under the conditions
in Fig. 5 to measure the computational time and the success rate.

Fig. 5  Evaluation environment

The first to third joints of the vertically articulated robot were
used to change the end-effectorʼs spatial position, while the
fourth to sixth joints were used to change the end-effectorʼs
orientation and tilt. In other words, the robot motion was
determined almost entirely based on the first to third joints.
Accordingly, three obstacles were placed in between the initial
posture and the goal posture to impede the robot motion along
the first joint(Fig. 5(c)), the second joint(Fig. 5(b)), and the
third joint(Fig. 5(a)), respectively. If these conditions did not
prevent path generation, the path planning algorithm could be
regarded as robust against the obstruction of the motion along
any of the first to third joints and highly versatile regarding the
robot motion. As far as the bin-picking action set for the target
computational time was concerned, successful avoidance of
colliding with the obstacle indicated by Fig. 5(a) would make
the algorithm sufficiently acceptable. We, however, set the
above conditions, considering the algorithmʼs versatility in
application to generating motions other than those for bin-
picking actions.

For our evaluation, we used a computer equipped with an
Intel® Core™ i5-4310U CPU running at 2.0 GHz. Considering
the inherent nature of random search, we set the upper limit of
computational time to 10 seconds and measured the success rate
per 100 times of path generation and the computational time per

success (Table 2). As a result, all the approaches evaluated
showed a high path generation success rate of 90 percent or
above but considerable excess in computational time from the
target value of 100 ms or below.

Table 2  Evaluation results for the existing algorithms

Algorithm
Computational time (ms)

Success rate (%)
Average Max.

RRT 826 2086   97

RRT-Connect 761 1629   99

TRRT 892 2047   94

BIT* 696 2115 100

For algorithm improvement, we performed a problem
analysis of the random sampling method. The computational
time t of the random sampling method can be expressed by
Equation (2):

 t t i t d
d

ts nn cc
i

n

= + ⋅ + ⋅⎛
⎝⎜

⎞
⎠⎟=

∑ Δ1
 (2)

where
n: The number of sampling runs until the achievement of the

goal posture;
ts: The time required for sampling point generation;
tnn: The neighbor node search time per sampling point;
d: The distance between the node added and its neighbor

node;
Δd: The collision detection interval; and
tcc: The time per collision detection.

Therefore, the number of sampling runs until the achievement
of the goal posture and the computational time per run must be
reduced to obtain a short computational time. As shown by the
experiment results in Table 2, the number of sampling runs, n,
and the required sampling computational time per run were
10,000 times and 0.08 ms on average, respectively.

3.3	 Improvement of the search algorithm
An analysis that we performed for the existing algorithmsʼ
search processing revealed that the number of sampling runs n
increased markedly at the inlet/outlet to/from the container or
the shelf. For a simple illustration of this problem, Fig. 6 shows
a 2-DOF robotʼs joint space and real space. Even an aperture
wide open in the real space would turn into one with a very
narrow robotʼs passable area in the joint space, showing the
difficulty in finding by random search the path from the initial
posture indicated in orange to the goal posture indicated in
green. This problem is known as the bug trap problem specific
to random sampling13).

5

Fig. 6  Typical bug trap (two dimensional)

Known approaches to addressing this kind of problem
include methods for performing searches using real-space data.
Among typical algorithms is the Exploration/Exploitation Tree
(EET) algorithm, which uses a virtual sphere in the real space to
perform searches and feed back the results to the joint space14).
This method performs searches in directions moving away from
real-space obstacles and shows high search performance for
bug-trap-like inlets/outlets. For non-bug-trap-like areas,
however, its performance significantly deteriorates because of
the lack of clues for the search. On the other hand, among the
algorithms evaluated in Table 2, the RRT-Connect algorithm
shows high performance for non-bug-trap-like areas. Designed
in the expectation of obstacle-sparse areas in the search range,
this algorithm works on the principle of generating one tree
from both the initial posture and the goal posture to perform the
search in the direction of the other tree. Hence, thanks to the
two trees that quickly connect to each other in an obstacle-
sparse area, the RRT-Connect algorithm provides high search
performance.

Then, we devised a new algorithm that uses both of these
two algorithms. In other words, when it finds itself stuck in a
bug trap-like condition, our new algorithm uses the EET
algorithm. Otherwise, it uses the RRT-Connect algorithm for
path generation. As already shown by the example in Fig. 5, a
bug trap may occur between a robot end-effector and a
container. Bug traps can also occur when the joint value reaches
or exceeds its upper limit or when a collision occurs between a
non-end-effector part and an obstacle. Accordingly, our devised
algorithm checks for the causative factors of all these bug traps.

This improvement of the search algorithm led to reducing the
number of sampling runs, n, to 200 times or below.

3.4	 Improvement of collision detection processing
Our next aim was to reduce the sampling computation time per
run. A profile analysis of the computational time found that
collision detection was responsible for approximately 90 percent
of the processing time. Then, we considered reducing the time
required for collision detection, (d ⁄ Δd)·tcc.

Collision detection is performed using a 3D simulation based
on the CAD data of a robot and its surrounding obstacles. As
shown by Equation (2), the method commonly used is to
discretize the change in the joint angle, d, between the
intermediate postures on the path by Δd and check for a
collision between the robot and any obstacle for each
discretized posture taken by the robot in the simulation space15).
Because the distance d between the intermediate postures is
constant, the number of determinations can be reduced when the
discretization rate is lowered by increasing the collision
detection interval Δd. However, collision risks may be
overlooked. Accordingly, we devised an algorithm that performs
collision detection coarsely when the robot is distant from any
obstacle and finely when they are near to each other as shown in
Fig. 7.

Fig. 7  Conventional collision detection method vs. our proposed method

With this method, we reduced the number of determinations,
d ⁄Δd, without compromising collision detection accuracy.

Furthermore, we aimed at reducing the computational time
per run of collision detection, tcc. CAD data used for collision
detection are furnished by the robot manufacturer or prepared
by the user for equipment design and hence provided as high-
accuracy data with many meshes ranging from several tens of
thousands to several hundreds of thousands. Because the
computational time per run increases in proportion to this
number of meshes, desirable CAD data are those with the
number of meshes reduced while retaining the geometric
features. Besides, collision detection processing is known to
become complicated when the model used has a concave shape.
However, collision detection processing can be accelerated
when the model used consists of shapes, each represented as a
convex hull, and allows collision detection based on the

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

6

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

distances between the center positions of the shapes16).
Considering the above, we chose to perform collision detection
processing after reducing the number of meshes in the CAD
data input to the simulation space for path planning and
convex-decomposing the shape model. Fig. 8 shows an example
of the shape simplification of a robotʼs elbow part.

Fig. 8  Typical shape simplification

We reduced the computational time per sampling run to 0.05
ms or below by incorporating the above coarse-fine search and
model simplification into collision detection.

3.5	 Evaluation of the automatic path generation technology
We performed an evaluation under the same conditions shown
in Table 2, albeit reflecting the search algorithm and collision
detection processing developed. Table 3 shows the evaluation
results. The results for RRT-Connect are copied from Table 2.

Table 3  Evaluation results for the method developed

Algorithm
Computational time (ms)

Success rate (%)
Average Max.

Out proposed method 28.9 90.4 100

RRT-Connect 761 1629 99

The above confirms that the search algorithm reduced the
number of sampling runs and accelerated collision detection
processing, thereby leading to the achievement of the target
computational time of 100 ms.

4.	 Automatic motion acceleration technology
4.1	 Related studies
For a robot to achieve a short motion time, it is necessary to
eliminate the redundancy in the generated path and appropriately
set the motion parameters. One of the technologies meeting
such a requirement is trajectory planning technology, which was
mentioned in reference to the related studies of automatic path
generation technology. Trajectory planning technology optimizes
the robot-to-obstacle distance, the end-effectorʼs orientation, and
the torque on the joint as the parameters of the cost function,

besides the robot path. Well-known technologies of this kind
include Stochastic Trajectory Optimization for Motion Planning
(STOMP)11) and Trajectory Optimization for Motion Planning
(TrajOpt)12). The distinction of STOMP is that it performs the
optimization calculation and adds random noise to the obtained
results to reduce convergence to local solutions and improve
the efficiency of optimum solution search. Meanwhile, what
characterizes TrajOpt is that it consecutively performs convex
optimization to obtain a short computational time. However, a
preliminary evaluation revealed that even these efficient methods
require a computational time of several seconds to several tens
of seconds and are unsuitable to meet the development target of
100 ms. Besides, these methods assume the predetermination of
the number of intermediate posture nodes and have the problem
of being unlikely to generate a solution with too few nodes and
frequently accelerating and decelerating the generated motion
with too many nodes, resulting in too long a motion time.

Thus, an attempt to solve the combination of path generation/
optimization and motion parameter optimization as a single
optimization problem would require considerable time for the
convergence of the many parameters having a tradeoff
relationship with one another and would result in complicated
settings. Therefore, to establish a fast optimization technology
for motion parameters, we adopted a procedure that first
optimizes the motion parameters based on a path generated
using our path generation technology and then corrects the
regions likely to affect the motion speed negatively.

4.2	 Motion parameter optimization
For a robot to perform a fast motion, the two parameters of
velocity θ and acceleration θ must be maximized within a range
not exceeding the robotʼs torque limit. This adjustment is
usually performed by tuning the velocity parameter with the
acceleration fixed. The torque on the robotʼs joint is expressed
by the sum of inertia torque M(θ)θ and friction torque F(θ) as
shown by Equation (1). However, in a vertically articulated
robot with a high motion speed, inertia torque has the most
significant influence. As Equation (1) shows, inertia torque
depends on the magnitude of acceleration, while friction torque
depends on the magnitude of velocity. It follows then that the
torque load on the vertically articulated robotʼs joint becomes
the largest in the timing that acceleration or deceleration was
generated, as shown in Fig. 9:

7

(a) Relationship among velocity,
acceleration, and torque

(b) Breakdown of torque

Fig. 9  Relationship of velocity and acceleration to torque on the joint

The above shows that contrary to the common practice,
acceleration adjustment is more effective than velocity
adjustment. Thus, we chose to accelerate the robot motion by
adjusting the robotʼs acceleration with its velocity fixed to either
a user-specified desired value or its maximum specification
value.

Acceleration adjustments are made according to the
following steps:

1. For each joint, using a path, a given maximum velocity,
and the 50 percent value of the robotʼs spec acceleration,
generate a trajectory and discretize it millisecond by
millisecond to calculate the torque on the joint.

2. From the time series data of the calculated joint torques,
identify the peak for each joint. If for each joint, the
difference between the torque and the torque limit at the
peak position is within the threshold, and if no joint
exceeds the torque limit, set their accelerations as the
optimal values.

3. If, for each joint, the peak torque exceeds the torque limit
or their difference exceeds the threshold, adjust the
acceleration until obtaining a value meeting the condition
by binary search. Return to Step 1.

4.3	 Path correction
Assuming that the robot motion is accelerated using the
acceleration parameter, the acceleration cannot be set
sufficiently high if the M(θ) term of the inertia torque M(θ)θ has
a large value. An M(θ) term with a large value means that the
path has on it a posture in which the joint rotation center-to-
mass point distance r shown in Fig. 10 becomes long and
causes the inertia to become significant.

(a) Path with a large inertia (b) Path with a small inertia

Fig. 10  Path with a large inertia path vs. path with a small inertia

When the path is such that it causes large inertia, the
acceleration can be further increased if the robotʼs posture can
be corrected to obtain small inertia within a range where the
original motion time will not be exceeded. However, an
evaluation of whether changes can be made to all the path
intervals and all the joints would be a process similar to the
optimization problem-solving method mentioned in reference to
the related studies, resulting in a long computational time.

Accordingly, we have chosen to limit the search range
focusing on each jointʼs first joint and limit the path-change
regions to along the jointʼs second and third joints to identify
regions correctable in a short time. The reason for focusing on
the first joint is that the effect of reducing the inertia on an joint
increases proportionally to the jointʼs proximity to the root of a
vertically articulated robot. Meanwhile, the reason for limiting
changes to along the second and third joints is that the inertia on
the first joint is attributable for the most part to the influence of
the second and third joints. The correction method is as
explained below:

1. First, from along the path, identify a continuous interval
rate-controlled to the first joint as the interval to be
corrected.

2. Based on the trajectory data, identify from the identified
interval an area where the amount of change in the first
joint is sufficiently large and that no motion deceleration
occurs even after the intermediate points for folding the
arm are added by moving the second and third joints to
the interval center.

3. Finally, set the amount of change in the second and third
joints so that the time required to undo the folded second
and third joints will not exceed the time required for the
first joint to move through the corrected interval.

With the above method, the path can be corrected to obtain
small inertia. By the interval rate-controlled to the first joint, we
mean the interval in which, among the amounts of time required

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

8

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

for the changes made to the respective joints between
neighboring intermediate points on the path, the amount of time
for the first joint is the largest.

4.4	 Effects of accelerated robot motion
A robotʼs motion speed can be boosted up to the limit using an
alternating cycle of acceleration maximization through motion
parameter optimization and inertia minimization through path
correction. What follows in this subsection shows the results of
the evaluation we performed. The experiment cases were the
five patterns of motion shown in Fig. 11, in which the robotʼs
end-effector exited one container and entered another during a
180° movement of the robotʼs first joint. A comparison was
made of the motion times before and after the application of the
motion acceleration technology.

Fig. 11  Evaluation patterns for the motion acceleration technology

The motion times before and after the technologyʼs
application were compared as follows to minimize the influence
of the variation in the actual robot motion: the motion was
performed 1,000 times before and after the technologyʼs
application, respectively; for each run, the motion time was
measured; the motion time before the technologyʼs application
was evaluated by the minimum value in the results from the
1,000 runs; the motion time after the technologyʼ application
was evaluated similarly but by the maximum value. For path
calculation and motion optimization calculation, we used the
same computer as used to evaluate the existing path planning
algorithms. Table 4 shows the motion-time improvement ratio
and the computational time, including path planning.

Table 4  Evaluation results for accelerated robot motion

Experiment case Motion-time
improvement ratio (%)

Maximum computational
time (ms)

A→a 24.7 95.1

B→b 19.4 97.1

C→c 28.1 96.5

D→d 28.3 85.3

E→e 23.3 90.0

The above confirms that a motion-time improvement ratio of
approximately 20 percent was achieved with a computational
time of 100 ms or below.

5.	 Demonstration system implemented
5.1	 System overview
We combined the automatic robot motion generation technology
developed for the present study with a 3D sensor to develop
a bin-picking demonstration system. The robot used was
OMRONʼs Viper 650, while the sensor used for recognition
processing was the robot-mountable 3D sensor earlier used
for development target estimation. Fig. 12 shows the external
appearance of the demonstration system.

Fig. 12  Demonstration system developed

The demonstration system served the bin-picking application
without needing prior teaching or parameter adjustment except
registering a prescribed set of data via the GUI. The data
required to be registered were as follows:

• Sensor position
• Position of the tray containing randomly piled workpieces
• Position of the tray for aligned placement of workpieces
• Coordinates data for aligned placement of workpieces
• CAD shape of the workpiece to be picked
• Robot handʼs shape and specifications

9

These data are only those necessary for the equipment
design. No special data are required for robot motion
generation.

5.2	 Performance evaluation
We evaluated the takt times achieved by the demonstration
system when it performed bin picking of the six types of
electronic parts. These takt times were each obtained by
averaging 20 measurements of time that the system took to
perform the Pick and Place motions pair shown in Fig. 3. The
time from sensing to motion generation during the initial run
was excluded from the evaluation. Table 5 shows the evaluation
results.

Table 5  Demonstration system’s takt time

Workpiece (dimensions in cm) Takt time (s)

A (2×3×1) 2.9

B (3×3×2) 2.7

C (15×1×0.5) 2.9

D (1×1×1) 2.9

E (1×0.5×1) 2.9

F (1×1×0.5) 3.0

These results were achieved with all the required steps, from
sensing to motion generation, completing within the Place
motionʼs duration and without the robot stopped for
computational processing purposes. The above confirms that the
demonstration system successfully performed the picking task at
a takt time equivalent to that achievable by a human operator.

6.	 Conclusions
We addressed solving the problem of the difficulty in motion
generation for vertically articulated robots, one of the
introductory impediments of robots into production sites. We
have developed an automatic robot motion generation
technology that automates the position-posture setting and
motion parameter adjustment tasks for robots. The automation
of the former task enabled context-specific algorithm selection
and efficient collision detection processing, resulting in the
ability to perform motion generation in a shorter time. The
latterʼs automation has produced the ability to maximize the
robot motion speed through the repetitive cycle of acceleration
parameter optimization, highly effective on the robotʼs motion
time, and path correction for inertia reduction. These
automation technologies are compatible with high-speed
processing and hence applicable to the bin picking that requires
much teaching. The bin-picking demonstration system built this
time achieved a takt time equivalent to that achievable by a
human operator. The development results obtained will be

commercialized as bin-picking applications or robot teaching
tools.

For the future, we are considering an upgrade to the
automatic generation of simultaneous and collaborative motions
among multiple robots to support more complex robot systems.

Acknowledgment
The outcomes of this paper were achieved through research and
development from 2016 to 2019. In addition to the authors, we
would like to express our cordial appreciation to Ms.
NAKASHIMA Akane, Mr. MORIYA Toshihiro, Mr. TONOGAI
Norikazu, Mr. SUZUMURA Akihiro, and Mr. KURATANI
Ryoichi. We would also like to thank the members of the
OMRON Research Center of America and OMRON Robotics
and Safety Technologies, Inc., for defining the requirements and
validating the commercialization of this research.

References
 1) METI Kinki Bureau of Economy, Trade and Industry, “2015

Investigation of the Introductory Impediments to the Deployment
of Industrial Robots to New Fields” (in Japanese), Ministry of
Economy, Trade and Industry, May 31, 2016, https://www.kansai.
meti.go.jp/3jisedai/report/report2015.html, (accessed Nov. 16,
2020).

 2) H. Hirukawa, “Path planning problem - Robot motion planning,”
(in Japanese), J. Inf. Process., vol. 35, no. 8, pp. 751-760, 1994.

 3) L. A. Loeff, “Algorithm for Computer Guidance of a Manipulator
in Between Obstacles,” Diss., Oklahoma State Univ., 1973.

 4) J. T. Schwartz and M. Sharir, “On the ʻpiano moversʼ problem. II.
General techniques for computing topological properties of real
algebraic manifolds,” Adv. Appl. Math., vol. 4, no. 3, pp. 298-351,
1983.

 5) S. M. LaValle. “Rapidly-exploring random trees: A new tool for
path planning,” Dept. Comput. Sci. Iowa State Univ., Tech. Rep.
TR98-11, 1998.

 6) S. M. LaValle, J. H. Yakey, and L. E. Kavraki, “A probabilistic
roadmap approach for systems with closed kinematic chains,” in
Proc. 1999 IEEE Int. Conf. Robotics and Automation (Cat. No.
99CH36288C), 1999, vol. 3, pp. 1671-1676.

 7) J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient
approach to single-query path planning,” in Proc. 2000 ICRA,
Millennium Conf., IEEE Int. Conf. Robotics and Automation,
Symp. Proc. (Cat. No. 00CH37065), IEEE, 2000, pp. 995-1001.

 8) L. Jaillet, J. Cortés, and T. Siméon, “Transition-based RRT for path
planning in continuous cost spaces,” 2008 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, IEEE, 2008, pp.2145-2150.

 9) J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. “Batch informed
trees (BIT*): Sampling-based optimal planning via the
heuristically guided search of implicit random geometric graphs,”
in 2015 IEEE Int. Conf. on Robotics and Automation, IEEE, 2015,
pp. 3067-3074.

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

10

KOJIMA Takeshi et al.� Fast Motion Planning Technology for Vertical Articulated Robot

10) N. Ratliff et al., “CHOMP: Gradient optimization techniques for
efficient motion planning,” in 2009 IEEE Int. Conf. on Robotics
and Automation, 2009, pp. 489-494.

11) M. Kalakrishnan et al., “STOMP: Stochastic trajectory optimization
for motion planning,” in 2011 IEEE Int. Conf. on Robotics and
Automation, IEEE, 2011, pp. 4569-4574.

12) J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization,” Robotics: Science and Systems, vol. 9, no. 1,
pp. 1-10, 2013.

13) S. M. LaValle, Planning Algorithms, Cambridge, England:
Cambridge University Press, 2006, 842 p., ISBN978-0-52186-
205-9.

14) M. Rickert, A. Sieverling, and O. Brock, “Balancing exploration
and exploitation in sampling-based motion planning,” in IEEE
Trans. Robot., 2014, vol. 30, no. 6, pp. 1305-1317.

15) C. Ericson, Real-Time Collision Detection. Florida: CRC Press,
2005, 632 p., ISBN978-1-55860-732-3.

16) A. Gaschler, Q. Fischer, and A. Knoll, “The bounding mesh
algorithm,” Technische Universität München, München, Germany,
Tech. Rep. TUM-I1522, 2015.

About the Authors

KOJIMA Takeshi
Technology Research Center
Technology And Intellectual Property H.Q.
Specialty: Software Engineering

HAYASHI Kennosuke
Technology Research Center
Technology And Intellectual Property H.Q.
Specialty: Electrical and Electoronic Engineering

FUJII Haruka
Technology Research Center
Technology And Intellectual Property H.Q.
Specialty: Software Engineering

HOSOMI Shinichi Ph.D (Information Science)

Development Department
Agri-automation Business Division
Innovation Exploring Initiative H.Q.
Specialty: Software Engineering

The names of products in the text may be the trademarks of each company.

11

