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In the manufacturing industry, it is important to identify the optimal production conditions using statistical 
methods, such as design of experiments. However, the number of experiments is often reduced through the use of 
knowledge and other means, which leads to lack of accuracy in the response surface model (RSM) for predicting 
product quality. In this paper, we adopt transfer learning, which is a technique of efficient learning by utilizing the 
knowledge gained in other domains, to propose a method for constructing RSMs with higher accuracy by 
introducing past experimental data into the learning process, even when only a few experimental data are 
available. In addition, we conducted an experiment on a packaging machine to verify its effectiveness. As a result, 
compared with the RSM constructed on a sufficient number of experiments, the proposed method managed to 
improve prediction accuracy by about 25%, even when the number of experiments was limited to 1/3.

1.	 Introduction
High levels of quality assurance and improvement of 
productivity are required in the manufacturing industry, 
although workforce shortages are becoming serious. In order to 
respond to such needs, quality control utilizing the accumulated 
data from upstream to downstream of the manufacturing process 
is becoming popular. In the planning and designing phase of the 
manufacturing process, construction of the manufacturing line 
that can stably produce quality products is the aim by 
incorporating the relationships between the manufacturing 
condition and quality of the product found by the number of 
experiments in various conditions into the design and 
manufacturing process. However, a change in the manufacturing 
environment, such as supplier change, transfer of the 
manufacturing facility, and replacement of the manufacturing 
equipment, which are difficult to assume during the design 
phase, can possibly occur. In recent years, the effect on quality 
of the product due to the use of the aged manufacturing 
equipment is also a concern that is caused by postponement of 
investments in new equipment due to intensified U.S.-China 
trade conflicts and/or COVID-191). In such a case where the 
effect on quality can possibly occur, experiments may be 
conducted to consider changes in the manufacturing conditions 
and the design.

One of the objects of such experiments is to construct a 
model representing the relationship between the manufacturing 

condition and quality. The design of experiments is a common 
method of such experiments and analyses to construct a precise 
model efficiently for such purposes. When the design of 
experiments is conducted, the number of experiments is 
frequently reduced compared with the recommended number of 
experiments, which is usually too large, utilizing knowledge2). 
For that reason, additional experiments become frequently 
necessary because of inadequate precision of the model due to 
the effect of factors that are not considered, inappropriate range 
of the experiments3). Accordingly, to construct a high precision 
model by number of experiments that is small enough is 
required in manufacturing industries.

Several methods to construct a high precision model even 
with a small number of experiments are proposed, and such 
methods can be classified as the method using knowledge or 
simulation4) and the method using the data obtained by similar 
manufacturing process5). Because knowledge is not formulated 
in many cases in the manufacturing floor, the former method is 
difficult to use. On the other hand, it is considered that the 
relationship between the manufacturing condition and the 
quality will be represented by similar expressions even in the 
event manufacturing equipment deteriorates, the manufacturing 
line is transferred as far as the product remains unchanged. 
Based on such concepts, we have studied the method to 
construct a model incorporating the data obtained when the 
manufacturing line of the same product was first started in the 
past to the data obtained when the event affecting the quality 
occurs. In this paper, the simple method as much as possible is 
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proposed that is compatible with the complexity of the model 
encountered in the manufacturing industry.

2.	 Proposed Method
2.1	 Outline of the Proposed Method
The phase from the design of the new product to the completion 
of the start-up of its manufacturing line is defined as the 
Start-up Period, and the phase when adjustment of the quality 
becomes necessary due to the event affecting the quality caused 
by deterioration of the manufacturing equipment or transfer of 
the manufacturing facility is defined as the Quality Adjustment 
Period. The outline of data acquisition and model construction 
in the proposed method in the respective periods are shown in 
Fig. 1.

Start-up period:
(1) Adequate data for all adjustment items are collected 

according to the design of experiments.
(2) The Response Surface Model (RSM) is constructed based 

on the data collected in (1) above, and the optimum 
manufacturing condition is identified.

Quality adjustment period:
(3) Data with the number of experiments restricted are 

collected based on the design of experiments utilizing the 
knowledge.

(4) The RSM is constructed by transfer learning based on the 
data collected in (3) using the data collected in (1) above 
to adjust manufacturing conditions to the optimum 
conditions.

The RSM is the model representing the relationship between 
the manufacturing condition and the quality of the product. The 
RSM is expressed by Equation (1) involving a function where x 
is the explanatory variable representing the adjustment item 
determining the manufacturing condition and y is the response 
variable representing the quality indicator determining the 
quality quantitatively.

 y f x= +( ) ε  (1)

ε is the noise. Besides the RSM used for optimization of the 
manufacturing condition in quality adjustment, the RSM is also 
used in various applications, such as reduction of tact time for a 
change in the manufacturing conditions corresponding to the 
production speed and the pursuit of the manufacturing 
mechanism.

Fig. 1  Conceptual flow of the proposed method

The objective of this proposed method is to construct the 
RSM taking the peculiarity of the acquired data in the start-up 
period into consideration and combining the transfer learning 
and regression analysis while ensuring the quality of the data 
acquired by the design of experiments. Construction of the high 
precision RSM is intended using this method even when only 
the small scale data are acquired.

From the following subsection, the outline of the concept and 
application method are discussed for the underlying techniques 
(design of experiments, transfer learning, and regression 
analysis) of the proposed method.

2.2	 Design of Experiments
The design of experiments collectively means the statistical 
approach for the method of experiments and analyses of the 
experiment data to know how the factors (adjustment items) will 
affect the characteristics (quality indicators) precisely and 
effectively. The design of the experiments for the combinations 
of all factors and all levels is called the factorial design, and the 
design with a reduced number of experiments for the factorial 
design based on the statistical approach, such as from 
orthogonality when the number of factors is too large, is called 
the fractional factorial design. There are a variety of designs for 
experimental methods depending on the purpose, such as the 
central composite design considering a balance between reduced 
number of experiments and quality of the data required to 
construct the RSM and the optimal design that provides the 
optimum design under restriction of number of experiments.

In any of the methods, there is a tradeoff between the 
number of experiments and the expected accuracy of the RSM 
obtained from the experimental data. When the number of 
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experiments is small, the expected accuracy tends to decrease 
because the higher dimensional effects and interactions between 
factors are not considered.

2.3	 Transfer Learning
Transfer learning is a method to improve the efficiency of 
learning in the target domain and to realize construction of the 
model with a higher accuracy of prediction by incorporating the 
data and features obtained from the other domain (source 
domain) when learning is based on the data obtained in the 
target domain considered.

For transfer learning, hypotheses are made from the aspects 
of the target domain that are similar to the source domain. 
When there is little similarity or the transfer learning method is 
not appropriate from the aspect of similarity, the effectiveness 
of the transfer learning will not be good because information of 
the source domain is not transferred properly. In such a case, the 
effectiveness of the transfer will not be good, and the 
performance of the transfer will deteriorate, and such a situation 
is called a negative transfer6).

In this paper, the state of the manufacturing line in the 
start-up period and the quality adjustment period are treated as 
the source domain and the target domain, respectively. As it is 
considered that the RSM in the quality adjustment period has 
changed from the state in the start-up period, the precise RSM 
cannot be constructed in many cases by simply combining the 
data obtained in the start-up period and the quality adjustment 
period. But the RSM in the start-up period and the quality 
adjustment period will be expressed by a similar expression 
because the product manufactured and the manufacturing 
method remain the same, which is assumed to be a similarity in 
transfer learning, and the effectiveness of the transfer is 
expected.

Based on the assumption of such a similarity and the 
condition setting explained in Subsection 2.1, the following 
requirements are considered for the transfer learning method.

• To be applicable to the regression analysis
• Number of training data should be from a few tens to a few

hundreds (because the number of training data = number of
experimental conditions×number of samples, and the
number of experimental conditions employed in the design
of experiments is usually less than 30).

Many studies of transfer learning are the classification 
problem (such as image identification) and most of the studies 
where transfer learning is applied to the regression analysis are 
related with the deep learning as a prerequisite.

The methods satisfying the above requirements are CORAL 
(Correlation Alignment)7) and FEDA (Frustratingly Easy 
Domain Adaptation)8). CORAL cannot handle the nonlinearity 
of the training data because the method employed is to convert 
the variance-covariance matrix in the source domain to fit in the 
target domain. Accordingly, FEDA is used in this paper. FEDA 
is a method to connect a zero vector to the data of the source 
domain and the target domain and expand the data three times 
in the column direction and to handle them as the training data 
of any learning algorithm as shown in Fig. 2.

Fig. 2  Expansion of data in FEDA

So, no restriction applies in the modeling method. By 
expanding the data, learning of the features common to the 
target domain and the source domain and the features unique to 
either of the target domain or the source domain can be possible 
while classifying them naturally. As the features taken from the 
source domain can be controlled like this, it is expected that 
negative transfer is not likely to occur.

The specific details of processing are as follows. Training 
data of the source domain and the target domain are expressed 
by Equation (2) respectively.

( , ) {( , )} ( , , )
( , ) {( , )} ( , , )
y x y x i N

y x y x j N

S S
i
S

i
S

S

T T
j
T

j
T

T

= =

= =

1
1

 (2)

Where yS, yT and xS, xT are the response variables and 
explanatory variables of the source and target domains 
respectively, and NS, NT are the number of training data (NS + 
NT＝N) of the same domains. The training data of the source 
domain (yS, xS) are expanded to (yS, 〈xS, xS,0〉) and the training 
data of the target domain (yT, xT) are expanded to (yT, 〈xT, 0, 
xT〉). Learning is made by the usual method after combining the 
data expanded in the row direction.

It is further possible to expand the data with respect to the 
feature value φ(x) by mapping to the higher dimensional space 
when compatible with the modeling method using the kernel 
method explained in Subsection 2.4. The feature values φ(xS), 
φ(xT) of the explanatory variables xS, xT in the source domain
and the target domain are expanded to 〈φ(xS), φ(xS), 0〉, and  
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〈φ (xT), 0, φ (xT)〉 respectively. Let x, x′ as the data in the source 
domain or the target domain. The kernel function K x( , x′) 

for 
the feature values expanded can be expressed as Equation (3) 
using the original kernel function K (x, x′) = (φ (x), φ (x′)), when 
calculated for the cases where the domains of the x and x′ are 
the same or different.
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Equation (3) means that the weight of the learning from the 
target domain is calculated as twice as large as the weight of 
learning from the source domain when the unknown data in the 
target domain are predicted using the constructed RSM. 
Accordingly, it becomes possible to predict the target domain 
with taking the information from the source domain into 
consideration8).

In this paper the method of learning by usual method in the 
former case after the data are expanded is called Simple-FEDA 
(s-FEDA), and in the latter case, the method compatible with 
the kernel method is called Kernelized-FEDA (k-FEDA).

2.4	 Regression Analysis
No restriction applies in the method of regression analysis to 
construct the RSM, but in the design of experiments, quadratic 
polynomial regression is usually used. When quadratic 
polynomial regression is used, the interpretation of the analysis 
will be easy because the model structure is simple, but the 
accuracy of the analysis may not be satisfactory if the 
relationship between the factors and the response is 
complicated. Accordingly, nonlinear regression is effective if the 
complicated relationship between the factors and the response is 
anticipated.

The Neural Network (NN) Regression9), Gaussian Process 
Regression (GPR)10), and Support Vector Regression (SVR)11) 
are the major nonlinear regression methods. The NN involves a 
large number of hyperparameters, which makes learning 
difficult and takes a long time. In the case of GPR, while the 
parameter adjustment is easy, a large amount of computation is 
required, and a complicated model will result because the model 
is constructed using all the data. In the case of SVR, the 
parameter adjustment is easy, and a simple model will be 
obtained because the model is constructed using only some key 
data. Accordingly, SVR is used in this paper as the regression 
analysis method.

The SVR is a nonlinear regression analysis method using the 
kernel method. By the kernel method, learning of the nonlinear 

relation becomes possible because the data are learned after they 
are mapped in the higher dimensional space instead of learning 
them directly. In addition, the following are the points to 
combine the kernel method with FEDA as explained earlier.

• Model construction by k-FEDA is possible because the
kernel method is used (Equation (3)).

• If FEDA and the quadratic polynomial regression are
combined, it is equivalent to the modeling for the source
domain and the target domain individually, and no effect of
transfer can be obtained.

The model expression in SVR is expressed as follows using 
mapping to the higher dimensional space.

f x b x w( ) ( )= + φ (4)

By solving the optimization problem (Equations (5) and (6)) 
introducing ε-insensitive error by the method of Lagrange 
multiplier, the model expression (Equation (7)) can be obtained.
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Where αi and αi
* are Lagrange constants and C and ε are 

hyperparameters. C adjusts the balance between the prediction 
error and regularization and ε controls the width of insensitive 
error band. Only the training data effective in expressing the 
model are extracted owing to the effect of regularization and 
insensitive errors. Prediction for data x is made by the linear 
combination of values of the kernel function corresponding to 
some of the training data xj.

The Gaussian kernel (radial basis function, RBF), polynomial 
kernel, and sigmoid kernel are used as the kernel function K (x, 
x′). There are hyperparameters that determines form of the 
kernel function and those that will bring the highest prediction 
accuracy after cross-validation will be generally adopted by the 
grid search.

3. Preliminary Experiment
The preliminary experiments are conducted for the artificial 
training data to verify the principle.

3.1	 Outline of the Experiments
Details of the training data artificially created are shown in 
Table 1. Two true models F(x) are created corresponding to the 
source domain and the target domain assuming the actual use 
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case. Output yi corresponding to the inputs xi (i＝1, 2,... Ntrain) 
for the source domain and the target domain, respectively, are 
generated by Equation (8).

 y F xi i i= +( ) ε  (8)

Where εi ~ N (0,1) are noise. Number of training data Ntrain is 
determined so that the ratio between the source domain and the 
target domain becomes 10:1 assuming that the number of the 
data is small in the target domain.

Table 1  Generation condition of the training data

Domain F (x) Ntrain  
−5≤x≤5

Ntest  
−10≤x≤10

Source 0.2x2−0.2x+3 100

Target 0.2x2−0.3x+0.5 10 100

FEDA (s-FEDA, k-FEDA) is used as the transfer learning 
method, and SVR is used as the regression analysis method in 
the configuration of the proposed method to be applied. RBF 
that allows use of the speeding technique is adopted as the 
kernel function of SVR, which is explained later. RBF is 
expressed by Equation (9).

 K x x x x( , ) exp( || || )′ = − − ′γ 2  (9)

The value y is the hyperparameter that determines the form of 
the function. Speeding technique proposed in the preceding 
research is used for adjustment of the hyperparameters C, ε, and 
γ of SVR12).

The RSM is constructed applying methods (SVR, SVR＋
s-FEDA, SVR＋k-FEDA) whether or not they involve the 
transfer learning to the training data generated.

3.2	 Results of Experiments
The performance of the respective methods is compared 
predicting the true value of the target domain using the RSMs 
constructed by such methods. The error is evaluated predicting 
the true value F(xi) (i＝1, ..., Ntest) for the range of x wider than 
the training data to know the generalization performance. The 
prediction error is evaluated using RMSE (Root Mean Square 
Error)(Equation (10)). Where i Ni test( , , )= 1 ŷ  is the predicted 
value.

 RMSE = −
=
∑1 2

1N
F x y

test
i i

i

Ntest

( ( ) )ˆ  (10)

Fig. 3 shows the RSMs constructed, and Fig. 4 shows RMSE 
by the respective methods as the evaluation results. The shaded 
area in Fig. 3 is the range of the training data, and the data 
points are the training data in the target domain.

The prediction error is large when the proposed method is not 

used because the number of training data is small, but when the 
proposed method (SVR + s-FEDA, SVR + k-FEDA) is used, 
the prediction error is improved as the training data become 
close to the model form of the source domain where abundant 
training data are available. It is confirmed that generalization 
performance of SVR + k-FEDA is good because the difference 
from the model form of the source domain is small. It can be 
considered that different domains result in complicated 
expressions as mapping to the higher dimensional space is 
applied after expansion of the data in SVR + s-FEDA while 
different domains are expressed by simple coefficients in SVR + 
k-FEDA as shown in Equation (3). As explained above, the 
RSM of the target domain taking the form of the RSM of the 
source domain into consideration is expected to be obtained by 
applying SVR + k-FEDA. Accordingly, SVR + k-FEDA is used 
in verification of the effect using the actual equipment in the 
next Section.

Fig. 3  Results of preliminary experiments

Fig. 4  Results of preliminary experiment (RMSE)

4.	 Verification of the Effect by the Actual 
Equipment

Verification results of the effect when the proposed method 
verified in Section 3 is applied to the horizontal form fill seal 
machine in the experiment are discussed in this section.
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4.1	 Outline of Verification
Fig. 5 shows the configuration of the horizontal form fill seal 
machine to which verification of the effect is made.

A product enters the packaging machine and is transferred by 
the press rollers while wrapped by the film formed in a tube 
shape by the center seal heater. The product is packaged by the 
film in pillow style after the film located forward and aft of the 
product is welded in the end seal process and is cut by the 
rotary cutter. Production of the product is made possible by 
strictly controlling the temperature and speed using the PLC and 
by adjusting the machine mechanically according to the 
machine condition and specification of the product13).

Fig. 5  Configuration of the packing machine

The effectiveness of the RSM constructed by the design of 
the experiments is verified in this paper, considering the use 
case where the packaging machine resumes operation after the 
optimum manufacturing condition is identified when the quality 
problem occurs due to deterioration of the equipment.

Wear of the press rollers is considered specifically as 
deterioration of the equipment, where improper welding of the 
center seal occurs due to wear of the press rollers, which are the 
components to pinch and feed the film in between. Deterioration 
of the equipment is simulated by increasing the width of the gap 
between the press rollers and loosening the adjusting screws 
because it is difficult to use actually worn rollers.

The strength of the center seal is used as the quality indicator 
corresponding to the quality problem due to wear of the press 
rollers. Fig. 6 shows the method used to measure the strength of 
the center seal. The tensile strength of the center seal used as the 
indicator is measured as the strength of the weld (tensile 
energy) using the apparatus and the method specified in JIS Z 
023814). The specimen taken from the sample is subjected to a 
tensile test, and the waveform of the strength N is recorded 
starting from the time the tensile force is applied to the time 
when the weld is completely destroyed (one stroke), which is 
taken into the PC as the time series waveform. Then the 
integration value of the time series waveform for one stroke is 
calculated as the center seal strength as the quality indicator.

Fig. 6  Measuring method of quality indicator

Five adjustment items, packaging speed [CPM], center seal 
temperature [°C], end seal temperature [°C], tension roller angle 
[°], and tension roller position [cm] that are adjustable and will 
affect the quality indicator, are selected. Packaging speed, center 
seal temperature, and end seal temperature are adjusted from the 
operation panel. Tension roller angle and tension roller position 
are the items adjusted mechanically to determine the entry angle 
and position of the film when the product enters the center seal 
process.

4.2	 Acquisition of the Data for Verification
The data are acquired in three domains (states) during transfer 
learning—in the start-up period and in the machine 
deterioration period (small scale) that are the source domain and 
the target domain, respectively, and the machine deterioration 
period (large scale) that is used as the reference in verification 
of the effectiveness.

The start-up period is the state when the packaging machine 
is started without deterioration and is the case when 
experiments are carried out for all five adjustment items above. 
The deterioration period (large scale) is the case when 
experiments are carried out for all five adjustment items in a 
condition with the deteriorated machine without restricting 
number of experiments. The deterioration period (small scale) is 
the case with the deteriorated machine when experiments are 
carried out for two adjustment items, packaging speed and 
center seal temperature respectively, that significantly affect the 
center seal strength based on knowledge. The composition of 
the training data of respective domains is shown in Table 2, and 
the outline of the design of experiments is shown in Table 3. 
The central composite design is used as the design of 
experiments method that ensures relatively high modeling 
accuracy by a smaller number of experiments.
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Table 2  Composition of the acquired data

Item

Domain

Start-up 
Period

Deterioration 
Period  

(Large scale)

Deterioration 
Period  

(Small scale)

Training 
Data

Number of Adjustment 
Items 5 5 2

Number of Experiment 
Conditions 31 28 10

Number of Data 358 273 112

Test Data

Number of Adjustment 
Items 2

Number of Experiment 
Conditions 5

Number of Data 60

Table 3  Experiment conditions (Range of respective adjustment item)

Adjustment Item

Domain

Start-up 
Period

Deterioration 
Period (Large 

scale)

Deterioration 
Period (Small 

scale)

Packaging Speed [CPM] 12~108 5~80 12~68

Center Seal Temperature [°C] 135~200 140~200 152~200

End Seal Temperature [°C] 130~200 130~200 130

Tension Roller Angle [°] 150~158 150~158 154

Tension Roller Position [cm] 9.8~14.6 9.8~14.6 12.2

The levels of adjustment item are established so that many 
quality products can be included in the adjustment range based 
on the knowledge specific to the packaging machine, the prior 
trial results, the range that can be established according to the 
construction, and the specifications of the machine. Level 3 to 
Level 5 are actually used for respective adjustment items. For 
the deterioration period (small scale), constant values of three 
adjustment items (end seal temperature, tension roller angle, and 
tension roller position) that are not included in the experiments 
are used as the values in the standard condition where the 
quality products were produced in the past (130 [°C], 154°, and 
12.2 cm respectively). The level of the end seal temperature in 
the start-up period and the deterioration period (large scale) is 
established within the adjustable range with the standard 
condition (130 [°C]) as the lower limit. This is because that 
quality welding does not occur, and unpackaged products will 
be produced frequently when the end seal temperature falls 
below 130 [°C].

Center seal strength is measured for 12 random samples 
produced from more than 100 samples operating the packaging 
machine without feeding the product under the respective 
experimental conditions. The number of training data is not 
equal to multiples of 12 because the center seal section is not 
welded for certain experimental conditions, which results in 
insufficient number of training data.

4.3	 Verification Results
It is assumed that the true model is similar in the start-up period 
and in the deterioration period because the production method 
and principle remain unchanged in both cases. The performance 
of the models is compared under such assumption, constructing 
the RSM applying the methods to the training data as explained 
in the preceding subsection, and calculating RMSE as the 
predicted error for the test data.

Three RSMs, the model with SVR applied in the 
deterioration period (large scale) used as the reference (Ref, 
reference), the model with SVR applied to in the deterioration 
period (small scale) only (OT, only target), and the model 
constructed with the proposed method applied in the start-up 
period and deterioration period (small scale)(TL, transfer 
learning), are constructed. Table 2 shows the test data used in 
performance evaluation. The same test data are used for the 
respective models. Test data are acquired in a manner similar to 
the manner when the training data are acquired but the 
experimental conditions of them are different. Constant values 
in the standard condition of the adjustment items are used for 
other than the packaging speed and center seal temperature 
because they do not affect the quality indicator.

Fig. 7 shows the RMSE for the test data of the respective 
models. The accuracy of OT where the number of the 
experiments is restricted is 22% lower compared with Ref. 
However, the accuracy of TL to which the proposed method is 
applied for the deterioration period (small scale) is improved by 
25% compared with Ref.

The time required to construct the model is about 1.5 seconds 
for Ref. and OT, and about 20 seconds for TL. This will be due 
to re-computation of the kernel function in Equation (3) because 
number of training data for TL is larger than the number for 
other models.

Fig. 7  Evaluation results (RMSE)
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4.4	 Discussion
The levels for the training data are established for the start-up 
period most densely as the number of experimental conditions is 
larger compared with the other domains. The similarity of the 
true models in the deterioration period and start-up period is 
assumed. It is believed that accuracy is improved because the 
intermediate state between the levels that cannot be expressed 
by experimental data in the deterioration period (small scale) 
and the deterioration period (large scale) can be expressed by 
transfer learning. To enjoy the effectiveness of the proposed 
method, it is considered important that training data of the 
source domain are comprehensively acquired, and a similarity of 
the true models between the source domain and the target 
domain exists.

As shown in Table 2, the number of experimental conditions 
in the deterioration period (small scale) is about 1/3 of the 
number in the deterioration period (large scale) (=10/28). This 
means that prediction of quality is possible even if the number 
of experiments is reduced to 1/3 in the manufacturing floor. This 
means, the man-hour required for quality adjustments can be 
reduced by two days in the manufacturing floor similar to this 
verification environment.

The quality indicator of the samples produced is confirmed 
with the manufacturing condition set as the optimum presumed 
based on TL. It is confirmed that the mean value of the quality 
indicator in the presumed manufacturing condition (44.4 
[N*mm]) is equivalent to the mean value of the quality 
indicator (31.5-50.6 [N*mm]) in the experimental condition 
where the quality products could be produced stably. The center 
seal strength scarcely changes when the temperature exceeds a 
certain temperature15). Accordingly, the optimum manufacturing 
condition for the center seal strength in this verification is 
considered to be spread extensively, and the manufacturing 
condition presumed is one of the optimum manufacturing 
conditions.

As explained above, the proposed method will be able to 
determine the optimum manufacturing condition with high 
accuracy in quality adjustment by conducting the experiments 
focusing on the major adjustment items without the experiments 
in large scale.

4.5	 Issues in the Future
It is impossible to completely eliminate the negative transfer 
discussed in Subsection 2.4, although the proposed method uses 
the method to reduce the negative transfer. Negative transfer 
cannot be identified without the trial conducted under the 
presumed manufacturing condition with the RSM constructed.

It is desirable that the presence of negative transfer can be 

identified by the user before the trial under the presumed 
manufacturing condition considering usability in the actual 
manufacturing floor. To improve usability, it is considered 
effective to determine the learning method used according to the 
prior judgement of the statistical similarity between the learning 
data in the source domain and the target domain16).

5.	 Conclusions
The analysis method combining SVR and FEDA is proposed in 
this paper to construct the RSM with high accuracy even when 
the number of experiments is limited for the case when quality 
problems occur because of various varying factors on the 
automated manufacturing line. In addition, verification of the 
effectiveness is made to the packaging machine used for the 
experiment, and it is demonstrated that the improved accuracy 
of the RSM in the quality adjustment can be expected utilizing 
the data obtained in the start-up period when various 
manufacturing conditions are tested.

The authors consider advancement of this method in the 
future to the technique that meets the variety of needs of the 
manufacturing industry, such as development of the effective 
method combining with the active learning and evolution to the 
optimization of multiple responses taking the variance of the 
quality indicator into consideration.
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