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In an imaging system with multi-CH lighting, this paper addresses the issue of optimizing the lighting conditions 
and the imaging conditions of the camera so that they are suitable for visual inspections. The proposed method 
establishes a technique for accurately simulating an image of a workpiece (subject to be inspected) under arbitrary 
lighting conditions by image synthesis and by correcting the hardware characteristics of ambient light, sensor 
noise, dark current offset, and the quantization of light intensity. By this technique, the number of photographs 
required for optimization was reduced to the logarithmic order of the number of patterns to be evaluated, and the 
search for the optimal solution could be completed in 1-2 seconds (for 39 CHs) from all lighting patterns. In 
addition, the proposed method works universally with multi-CH lighting devices in an arbitrary configuration, 
while the conventional technique requires modification of the optimization algorithm depending on the 
configuration of the lighting device. The proposed lighting simulation is a fundamental technology for automating 
the teaching process and making it off-site.

1. Introduction
1.1 Background
Visual inspection of products in the manufacturing industry is 
one of the operations where the replacement of labor by 
automated machines has not advanced but is the most important 
challenge of automatization, considering the decreasing working 
population in the future. In recent years, automatization 
technology for inspections has advanced significantly owing to 
the progress of the technologies, such as artificial intelligence, 
machine learning, and typically deep learning. However, the 
time consuming operation required in constructing the 
inspection system for visual inspections and machine vision is 
generally the design of the imaging system involving 
optimization of the lighting conditions, and automatization of 
this operation is not much advanced. When this operation is 
difficult and is made manually by persons, the steps of manual 
adjustment of the lighting equipment changing the inspected 
workpieces one by one so that visual detection of any possible 
defect of the workpiece that will vary individually can be made 
without fail, and the step of examination and verification of the 
inspection algorithm must be repeated, which requires 
significant person-hours to achieve the desired detection 
capability.

The difficulty involved in the optimization of lighting 

conditions is that no expedient method is available to seek the 
appropriate lighting conditions other than to repeat imaging by 
changing large numbers of workpieces in the imaging setup, 
when it is unknown what images can be taken under what 
lighting conditions. When such restrictions of hardware are 
imposed, the sufficient number of trials required to obtain the 
optimum result cannot be made, and the optimum solution 
cannot be obtained within the allocated person-hours.

The multi-CH lighting optimization technique based on the 
lighting simulation technique is proposed in this paper to solve 
this issue. The lighting simulation here means the simulation of 
the entire imaging system, including the lighting system whose 
light distribution can be controlled in order to output the 
presumed image for the given lighting condition and camera 
setting, in other words, the problem in normal direction. When 
such a simulation is possible, seeking the most appropriate 
lighting condition for the inspection becomes possible for 
evaluating the images taken. The outcomes that such a lighting 
simulation technique can bring will be as follows.

(1) The optimization problem involving the imaging system 
hardware is changed as the numerical computation 
problem by the PC, and optimization of the lighting 
suitable for the algorithm and of the algorithm suitable 
for the lighting condition can be solved simultaneously 
by the existing numerical optimization technique.

1

OMRON TECHNICS Vol.53.009EN 2021.6



(2) Because optimization is made directly for a large number 
of workpieces/variations in transfer actually imaged, a 
larger number of samples can be looked over, and more 
appropriate settings can be determined compared with the 
optimization made manually by persons.

(3) Optimization of the lighting condition and the inspection 
algorithm can be made off-site by the PC after initial 
imaging on-site, and the process does not occupy the 
resources, such as the inspection device and sample 
workpieces, in the optimization process.

(4) When a new variation mode of the workpiece appears and 
it becomes necessary to reconfigure the inspection 
process, troublesome verification work involving new 
imaging using a large number of workpieces already 
taken can be avoided.

Various lighting systems are considered as the equipment 
with light distribution control feature, which are classified to 
multi-CH light and the movable light. The multi-CH light 
allows individual intensity adjustment of lights but the number 
of channels becomes too large when the angular resolution is 
increased; however, its durability is high because no movable 
parts are used. It allows lighting from the lighting angle where 
identification of the defect becomes easy and reduction of the 
texture inappropriate for inspection by simultaneous lighting 
from different angles. The movable light is a type in which light 
distribution is changed by moving position of the lights and 
includes the type where the position of the light is changed 
manually. The mechanical system to move the lights becomes 
necessary when the distribution of light needs to be 
parametrically controlled automatically as a mathematical 
optimization problem.

The multi-CH lighting is discussed in this paper. The reason 
is that an accurate lighting simulation can be made by 
superposition synthesis using simple addition and subtraction of 
images. Because an accurate lighting simulation is difficult for 
movable lighting, priority is not given to the study, and it is not 
discussed in this paper. While the lighting simulation technique 
discussed in this paper can be applied to any multi-CH lighting 
independent of the specific system, the lighting systems 
FL-MD180MC (Fig. 1) and FL-MD90MC having 39CH (13 
azimuth angles and 3 colors) for the FH series are used in the 
experiment.

Fig. 1 Example of multi-CH lighting (FL-MD180MC)

1.2 Related Studies
The method to select the lighting pattern with the highest 
evaluation index by discriminant analysis actually repeating 
imaging in various lighting patterns1) is reported as the available 
technique for this problem. Discriminant analysis is also used 
for the evaluation index in this paper, but the proposed 
technique is superior in the following two points.

The first point is the time required for optimization. Let K be 
the number of lighting channels, T be the number of 
quantization levels of luminous intensity, and E be the possible 
number of exposure levels, then the number of lighting 
conditions becomes E * T K, which increases exponentially with 
respect to number of channels, and when the number of 
channels is large, it takes enormous time to take and examine 
images under all imaging conditions. By the examination in this 
paper considering such a problem, the number of imaging 
events can be reduced to multiples of K by the proposed 
technique. In the conventional technique, the proposal is to 
solve the problem of too large a number of imaging events by 
efficient searches using the coarse-to-fine search algorithm1), but 
it requires the design of the search algorithm empirically every 
time based on the configuration information of the lighting-CH. 
The proposed technique in this paper allows the design of the 
optimization algorithm to be independent of the specific 
configuration of the lighting-CH and the construction of the 
algorithm that can be applied generally to any multi-CH lighting 
system.

Another difference is that it is easy to construct an evaluation 
function. Because the statistical dispersion of the workpiece is 
handled generally in a visual inspection, optimization using the 
evaluation function for multiple samples is required rather than 
using a single workpiece. Optimization of lighting by any 
evaluation function using all images of the samples 
simultaneously becomes possible in the proposed technique. In 
addition, when the problem setting of the lighting design is a 
multi-objective optimization problem that requires optimization 
balancing multiple requirements of the inspection and where a 
single objective function cannot be defined in advance, the 
solution must be renewed by interactions modifying the 
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objective function, but by the proposed technique, another 
imaging event is not required even when the objective function 
is changed, and a quick response and excellent usability can be 
realized.

Proxy Modeling2), where behavior of the imaging system is 
approximated by machine learning, is also examined as 
optimization of the imaging system using the imaging simulator 
as in this paper.

1.3 Notation
Bold lowercase letters indicate vectors and bold uppercase 
letters indicate matrices. Others are scalar quantities. 

 ·  

indicates the l2 norm of the vector and [X ]i,j indicates the 
element of matrix X in row i and column j.

2. Lighting Simulation by Image Synthesis
It is important that the accurate imaging system simulator be 
constructed in the optimization of the lighting and imaging 
systems with control of the degrees of freedom. In this paper, 
high accuracy of estimation correcting the actual characteristics 
of the device is realized focusing on the fact that the imaging 
simulator can be realized by simple image synthesis 
(superposition of images) in the case of multi-CH lighting.

2.1 Acquisition of Workpiece Evaluation Image by Basis 
Illumination Pattern

It is assumed that the linearity of the sensor of the imaging 
system (linearity between intensity and pixel value) exists for 
the lighting simulation by superposition of images. This means 
that the system is sufficiently linear, including the signal 
processing, such as demosaicing of the color filter array, zero 
pixel value when the intensity is zero by correction of the dark 
current offset and with the image processing, including HDR 
(high dynamic range) synthesis, to eliminate nonlinearity due to 
pixel value saturation. The image taken in such a manner is 
called the intensity image. Consider the situation where an 
image of the workpiece illuminated by multi-CH lighting with 
number of channels K is taken for the inspection, and the 
relative intensity of the respective channel (intensity that is 
constant factors of intensity) should be expressed as the 
following relative intensity vector.

 ϕϕ = ≥( , , , ) ,ϕ ϕ ϕ ϕ1 2 0 K
T

k  (1)

Consider the situation where the optimum lighting condition 
φ for inspection is determined by taking images of single 
workpieces changing the lighting illumination pattern for N 
times in teaching. Let the relative intensity vector of the n (1 ≤ 
n ≤ N)-th image be defined as follows.
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By taking images of the workpiece under such illumination 
patterns, it becomes possible to reconstruct the image of the 
workpiece illuminated by any illumination pattern. This process 
is equal to the estimation of the LT (Light Transport) matrix3). It 
is generally desired to determine the illumination pattern as a 
rank of the matrix H = min (N, K), in other words, linearly 
independent to obtain all the degrees of freedom of the LT 
matrix. At least N should be equal to K to fully utilize number 
of degrees of freedom of lighting K, and H should be of full 
rank.

When N < K, the degree of freedom by the number of lights 
cannot be fully utilized, but the time required for imaging of the 
workpieces can be reduced. Such a situation occurs in the 
problem setting where control of the degree of freedom K is 
large. Typical example is the LT matrix estimation method3) 
using compressed sensing.

The case where N > K can be also considered and it is more 
than required in the sense of fully utilization of the degree of 
freedom, and the number of images taken will become useless, 
but such a case can be used for the purpose of improving the S/
N ratio and the dynamic range4).

Let the intensity image taken in the illumination pattern hn be 
called the basis image. Using the matrix F = [f1, f2, ..., fN] with 
the column vectors of the basis images fi placed side by side for 
the number of columns N, the relative intensity vector φ at the 
time of inspection and the intensity image g at that time can be 
expressed as follows.

 ϕϕ = =Hx x, ( , , , )x x xN T
1 2   (3)

 g f Fx= =
=
∑ xi i
i

N

1
 (4)

Where xi is a vector indicating the mixing ratio of the 
respective illumination patterns. The intensity vector of each 
lighting channel (level of the intensity gradation quantized) is 
calculated from the above value, but it is not the above value 
itself. The above value may be a negative value, but because the 
illumination pattern of lighting must be positive, the following 
condition applies.

 Hx ≥ 0 (5)

Consider that the signs of inequality for the vector and 
matrix are the signs of inequality for all of their elements. When 
H = I, in other words, images of quantity K (= N) are taken with 
the light turned on one by one, φ and x are equivalent. From the 
following subsection, the problem of obtaining the optimum 

3



lighting φ by obtaining the optimum weighting x in image 
synthesis is discussed.

2.2 Evaluation Formula of Sensor Model and Image 
Synthesis

The model used to convert the image vector ′fc  taken with 
exposure time τ to the image vector ′gc with exposure time τ′ is 
expressed as the linear model with the offset as shown in the 
following Equation (6) when pixel saturation is not considered.

 ′ = ′ ′− +g fc c c cd dτ
τ
( )  (6)

In this case, c (1 ≤ c ≤ C) is the color index of the color filter 
of the camera and dc is the dark current offset to be obtained in 
advance by calibration. When the sensor follows such a model, 
the lighting simulation by image synthesis under multi-CH 
lighting is expressed by the following equation.

 ′ = ′ − +∑g f
n

N

c n c n c n c cw d d, , ,( )
=1

 (7)

In this case, ′fn c,  is the column vector of the basis images 
taken. Because the basis images are taken by AEC (automatic 
exposure control) or by HDR, respectively, images are taken by 
different exposures or gains for the respective indices of the 
basis n (1 ≤ n ≤ N). ′gc is a synthesized image vector taken with 
exposure time τ′. wn,c is the weighting in image synthesis, and 
the best weighting is uniquely determined by the intensity level 
for the lighting channel and the exposure setting.

3. Determination of Optimum Lighting 
Condition for Inspection

3.1 Evaluation Criteria Cross Entropy vs. S/N
The purpose of lighting design in visual inspections is to allow 
correct discrimination between quality products and defective 
products. When the predefined discrimination algorithm is given 
as the discrimination criteria, the optimization problem of 
lighting is formulated as the problem of minimizing cross 
entropy to make discrimination results between the quality and 
defective products in agreement with the correct answer. When 
the discriminator is the machine learning device, learning of the 
optimization of lighting and by the discriminator may be made 
simultaneously to enable the highest performance of both 
functions.

However the problem encountered in minimizing cross 
entropy is that a large number of samples are required that are 
labeled as quality or defective products. This is a big issue in 
the start-up period when a large number of samples cannot be 
obtained. In particular, when optimization of the lighting system 
with a high degree of freedom is undertaken, the criteria for 
discriminating the small number of quality/defective product 

labels will result under any optimum lighting condition (the 
condition cannot be determined uniquely).

To solve this problem, maximization of the S/N ratio in the 
sense of dissociating the foreground designated by the user from 
the background is employed in this paper. This is a method to 
optimize the lighting using the evaluation criteria for images 
(contrast, brightness, and proximity) as the basis. When 
considered as above, the following two requirements mainly 
apply in the lighting design used for visual inspections.

(1) To make a feature that allows easy discrimination 
between the quality and defective products possible (i.e., 
to make the defect easily visible)

(2) To make dispersion between the quality products difficult 
to discriminate

As the above requirements are conflicting requirements in 
many cases, the design of the lighting system balancing these 
requirements is the challenge in optimization.

3.2 Acceleration of Evaluation Function in Quadratic Form
As discussed in Subsection 2.2, the basis images are taken with 
different exposure times to measure the gradation accurately. 
For that reason, weighting in image synthesis w is defined 
involving differences in exposure level, which is not the relative 
intensity of the lighting channel to be obtained. Vector x 
indicating the intensity ratio of the lighting channel to be 
obtained is expressed as follows with τ0 as the reference 
exposure level arbitrary determined and τi (1 ≤ i ≤ N) as the 
exposure level of the respective basis images.

 x D w D== −−1 , , , ,= ⎡
⎣⎢

⎤
⎦⎥

diag τ
τ

τ
τ

τ
τ

0

1

0

2

0
N

 (8)

The approach to restrict the evaluation function to a quadratic 
expression is used to accelerate the evaluation of the image 
evaluation criteria in this paper. The synthesized images is 
expressed as g = Fx from Equation (4). In this case, F is a 
matrix of the basis images with the reference exposure level 
defined below.
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 (9)

As contrast can be expressed as　BFx

2 with Toeplitz 
matrix B as the high-pass filter, brightness can be expressed as 
BFx

2 with B as the mean operation of pixel value, and 
agreement of the image can be expressed as 

F1x–F2x

2 using 
the above; all these can be expressed in quadratic form like 
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xTQx with the matrix Q as the N×N positive-semidefinite 
matrix. Similarly, the dispersion of images and error in 
projection to the linear subspace also have a quadratic form. 
  Fx g− 2 is when agreement is sought with the image g 
designated in advance as another evaluation function, 

BFx–y2 
is to make the image to the designated brightness and color y 
with B as the mean pixel value, and  BF x x( )0 + 2 is to 
optimize the rest of the lighting pattern while maintaining the 
specified part of the lighting pattern unchanged, and all of these 
have the quadratic expression xTQx + cTx.

As such, the evaluation function allowing accelerated 
evaluation independent of the number of pixels of the images 
can be realized by expressing the coefficients of the quadratic 
expression. Note that these expressions become invalid when 
pixel saturation occurs. Accordingly, optimization should be 
made within the range where pixel saturation will not occur, and 
when saturation is involved, optimization should be made by 
direct calculation of the l2 norms after clipping of the images by 
saturation without simplification using a matrix.

3.3 Lighting Design by Fisher’s Linear Discrimination
Fisherʼs linear discrimination is the method to obtain the 
projection vector that minimizes dispersion within the class and 
maximizes dispersion between classes. The effectiveness of this 
method is limited compared with the method incorporating non-
linear computation because the computation to generate the 
feature vector is simply the inner product. Because optimization 
of the lighting condition discussed in this paper is simply a 
computation of the inner product and the linear projection in the 
mathematical sense when imaging by the multi-CH lighting is 
regarded as the computation, the use of Fisherʼs linear 
discrimination to obtain the optimum linear projection is 
appropriate. The problem to compute the multi-CH light 
illumination pattern that realizes Fisherʼs linear discrimination is 
formulated as explained below where dispersion within the class 
and dispersion between classes are defined focusing on 
closeness (similarity) of the images by the l2 distance of the 
images.

The problem to discriminate the workpieces generally into 
categories of V is considered, for example, when the 
workpieces are discriminated into two categories: quality 
products and defective products, V = 2. The index of the 
category v should be 1 ≤ v ≤ V. Consider that there are P ( ≥ 1) 
groups for comparison between the region of interest (ROI) of 
images. The criteria for optimization of lighting are defined by 
the magnitude of dispersion of the group of images belonging to 
the same group. Let the index of the group for comparison in 
ROI be 1 ≤ p ≤ P. Consider that the set of images Spv( ) where 

ROI is extracted from the images of workpiece is given for 
combinations of v and p according to the instructions of the 
user.

Consider that the images of the workpiece used for teaching 
F ∈Spv( ) are taken with the individual light of multi-CH lighting 
turned on according to the specified (for evaluation) 
illumination pattern hn. The expected value of the distance 
within the class (dispersion of the quality products) Dwithin and 
the expected value of the distance between classes (easiness of 
identifying a defect) Dbetween are defined as l2 distance by the 
following equations.

 D Mwithin Var= ( )
v p

p
v

p
vS

,

( ) ( ),  (10)

 D M Mbetween Var= { }( ) 
p

p
v

v v
p
v( ) ( ),  (11)

 where M F
F

p
v

Spv
( )

( )
=

∈


Var (S, M) is the dispersion calculated from the set and the 
mean M of multi-CH images S and defined as follows. This can 
be expressed as the quadratic form of the lighting vector x and 
the coefficient matrix in this case is expressed as Q.

Var vec

tr

( , ) ( ) ( )

( ) ( )

S
S S

T

T

M Fx Mx x I F M

x I R x I
F F

= − = ⊗ −
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∈ ∈
    2 2

== x QxT  (12)

Where ⊗ is the Kronecker product and vecA a a a= [ , , , ]1 2
T T

N
T T , 

and the matrices R and Q are expressed as follows.
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 (13)

 [ ] ( ) ( ),Q f m f m
F

i j
S

i j
T

i i= − −
∈
  (14)

Where fi and mi are the i-th column vector of the matrix F 
and M. When the coefficient matrices of Dwithin and Dbetween in 
quadratic form are Qwin and Qbwn respectively, the following 
evaluation formula is maximized in Fisherʼs linear 
discrimination to maximize the dispersion between classes and 
to minimize the dispersion within the class at the same time. 
The equation means that the S/N ratio is maximized to show 
how much the foreground is separated from the background. As 
far as expressed by the quadratic form, any evaluation formula 
in Subsection 3.2 can be used. The x that maximizes this 
equation is the weighting to be obtained in image synthesis, in 
other words, the optimum lighting condition.

 maximize subject tobwn

win

x Q x
x Q x

x
T

T , :  2 1=  (15)
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The meaning to restrict the norm of x is that the intensity 
cannot be decided by the evaluation function only (intensity 
cannot be decided as the evaluation value does not change by 
constant multiplication of x). The optimum projection direction 
in Fisherʼs linear discrimination can be obtained as the 
eigenvector corresponding to the maximum eigenvalue in the 
generalized eigenvalue problem by the Lagrange multiplier 
method. In the case of the optimization of lighting, the possible 
negative values of the eigenvector are a problem. While the 
intensity vector is established in the direction of the eigenvector, 
the problem is that the negative intensity of the lighting cannot 
be realized. There are two major approaches to solve this 
problem.

The first approach is to solve the optimization problem for 
the lighting intensity vector with the non-negativity condition. 
This paper shows that the numerical optimization can be applied 
for the limited cases.

The second approach is to realize pseudo-negative lighting 
intensity by dividing the lighting intensity into two sets, one for 
positive and the other for negative intensity, taking the images 
for both sets with the absolute value used for the negative 
intensity, and obtaining the differences between these images by 
image processing. The equivalent results can be obtained for the 
results of images taken directly with the eigenvector where the 
original positive and negative intensity coexist in this approach 
but taking images after at least twice changing the lighting 
condition is required. The multi-shot imaging inspection is not 
discussed in this paper.

3.3.1	 Solution	by	Semidefinite	Programming	Method
It is explained here that the optimum lighting solution in the 
optimization problem of Fisherʼs linear discrimination expressed 
by the following equation can be obtained quickly with the non-
negativity condition by the numerical optimizer, when the 
number of pairs of the foreground and the background defining 
the S/N ratio to be maximized is one.

 

maximize :

subject to

bwn

win

x Q x
x Q x
x Hx

T

T ,

: , 2 1= ≥ 0 (16)

In this case, Hx ≥ 0 means that all the elements of the vector 
Hx are non-negative. This problem can be transformed as 
follows without losing generality.

 
maximize :
subject to

win

bwn

x Q x
x Q x Hx

T

T

,
: ,= ≥1 0

 (17)

This problem is known as Nonconvex-QCQP (Quadratic 
Constrained Quadratic Programming) problem that is generally 

NP-hard, but in this case, semidefinite relaxation5) can be 
applied, and the solution can be obtained by SDP (Semidefinite 
Programming). Specifically, xxT is replaced assuming that it is 
the positive-semidefinite matrix X and is transformed into the 
following optimization problem.

 ≽

maximize :

subject to

win

bwn

X Q

X Q HXH

X X X

T
F

F
T

T

, ,

: , , ,

,

= ≥

=

1 0

0  (18)

In this case, A B AB, F
T= tr  means the Frobenius inner 

product of the matrix, HXHT ≥ 0 means that all the elements of 
the matrix are non-negative, X ≽ 0 means that the matrix X is 
positive-semidefinite, and XT = X means that the matrix X is 
symmetric. Optimum solution X of this problem can be obtained 
quickly using the SDP solver. It is known that the rank of the 
solution X becomes 1 in almost all cases because of the number 
of constraints in SDP5), and as it can be approximated as X = 
xxT, the relative intensity vector as the optimum solution can be 
obtained by obtaining the eigenvector φ corresponding to the 
maximum eigenvalue using eigenvalue decomposition of HXHT 
= HxxTHT = φφT. Because φ ≥ 0 is guaranteed when HXHT ≥ 0 
according to the Perron-Frobenius theorem, all the optimum 
solutions can be used as the non-negative light setting.

3.3.2 Solution by Multi-objective Optimization
The solution by the SDP explained above can only handle the 
problem of maximizing the S/N ratio for a pair of a single 
foreground and background, and the optimization problem 
containing a quadratic expression that involves the primary 
term, such as optimization of the brightness, cannot be handled. 
When multiple S/N ratios for the number of pairs of 
foregrounds and backgrounds need to be maximized at the same 
time or when the brightness and contrast are brought close to 
the desired values, the multi-objective optimization problem 
must be solved where multiple objective functions are 
maximized with a balanced approach. To handle such a 
problem, the weighted sum method6) is used in this paper, where 
the weighted sum of the individual objective functions is 
maximized while realizing the appropriate balance between the 
objective functions adjusting the weighting factor by a large 
number of trials. Sequential Least Squares Programming 
(SLSQP) is used for optimization.

4. Evaluation Experiment
4.1	 System	Configuration
The system configuration used in the evaluation experiment is 
based on the OMRON image processing system FH series. The 
multi-CH lighting systems used are the FL-MD180MC and 
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FL-MD90MC, and the cameras used are the FH-SCX12, 
FH-SMX12, FH-SCX05, and FH-SMX05. The imaging setup is 
located in a dark room in order to avoid entry of ambient light 
when basis images are taken. Imaging algorithms by AEC and 
HDR, dark current offset correction, and calibration function for 
correction of intensity level - brightness are incorporated as the 
processing units implemented in FH. Other optimization 
algorithms and the UI functions run on the PC connected to FH 
via LAN.

4.2 UI
The teaching UI of the lighting optimization created is shown in 
Fig. 2. Images of the workpiece are taken after the base level 
luminescence pattern and imaging method, such as AEC and 
HDR, are selected in ①. The image of the workpiece taken is 
selected in ②, and the evaluation criteria and weighting of the 
multi-objective optimization are input in ③. In the entry of the 
evaluation criteria, multiple workpieces can be referenced at the 
same time. When optimization is executed, the list of solutions 
is shown in ④, and the solution can be compared and examined 
confirming the evaluation values of the objective functions in 
③. When the solution is selected, the intensity level is 
displayed in ⑤. Depending on the setting of the problem, one 
axis of brightness is not determined, and the scales can be 
adjusted in ⑥. When the imaging condition is determined, 
comparison of the workpiece images displayed in ⑧ can be 
made switching the simulation image and actual image in ⑦.

Fig. 2 UI of the lighting optimization demonstration system created

4.3 Installed Software and Execution Time
Python is installed for numerical calculations. Numpy is used 
for calculation of the matrix, and as computation of the inner 
product Equation (14) is most time consuming, preprocessing 
like multi-threading and image shrinkage is applied. For 
minimization of Equation (18) by SDP, installation of CvxOpt7) 
is used. The average time required for optimization when N = 
39 is 1 to 2 seconds. SLSQP installed in SciPy8) is used for 
multi-objective optimization. To avoid locally optimized 
solutions, optimizations are repeated a number of times 
assigning the initial values N times, and the best solution is 
selected. The time required is about one second for optimization 
with the initial value assigned for N times.

4.4 Measures for Entry of Ambient Light
When ambient light other than the light from the lighting 
equipment enters the image sensor, a difference between the 
actual image taken and the simulated image will result.

In order to relatively minimize the effect of the ambient light 
in basis image taking, the technique to always take images with 
the maximum intensity of lighting and to avoid saturation of the 
sensor adjusting exposure level of the camera is introduced 
(AEC imaging).

As another measure for ambient light, the correction process 
is established where the image under the ambient light is taken 
with all the lighting devices turned off while the basis image of 
the workpiece is taken because the presence of ambient light is 
equal to the situation where one lighting device of the multi-CH 
lighting stays on. It is confirmed that correction of ambient 
lighting is possible to the level acceptable in an indoor 
environment. For verification of the simulation performance in a 
condition unaffected by ambient light, the result of images of 
the workpiece taken in the dark room is discussed in this paper.

4.5 Comparison of Images Actually Taken and by Simulation
Fig. 3 shows comparison between the image synthesis 
simulation results and the actual images for variety of 
workpieces and illumination pattern.
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Fig. 3 Comparison of images actually taken and by simulation

Although it is difficult to identify the difference when both 
images are closely placed, there is a shift of about ±0.1 in 
brightness and a color phase shift (shift of brightness by color 
and by channel). The shift of brightness is caused by the 
characteristics of the power supply, and the color phase shift is 
caused by the shift in the estimation of the dark current offset 
amplified by exposure conversion in AEC imaging. Although 
improvement by correction is considered possible, it is not 
considered for the application of optimization of the lighting 
because the performance at present is satisfactory.

(X) in the figure shows that the ratio of pixel values of the 
simulation image is within the range of 3σ of the shot noise of 
20 actual images when the shift in brightness is corrected 
ideally, and similarly, (Y) shows the ratio of pixel values when 
the color phase shift is ideally corrected. It is shown that an 
estimation is possible in most cases within the range of shot 
noise when these are corrected. The reason why the ratios of 
(X) and (Y) are low for the workpiece (C) is the effect of the 
noise in dark areas because of the wide brightness dynamic 
range.

Another noteworthy disagreement is a certain difference in 
the degree of white blotting near saturation as shown in the 
Fig. 4. When the pixel saturates, gradation information is lost 
due to nonlinear characteristics. Accordingly, when interpolation 
by demosaicing is applied between the saturated pixels, it will 
create disagreement between the actual image and the image 
synthesis. Such phenomenon will appear as disagreement in the 
degree of white blot near saturation region but it cannot be 
corrected because it is a theoretical phenomenon.

(a) Actual (b) Image synthesis simulation
(High contrast in near saturation region)

Fig. 4 Disagreement of contrast in near saturation region in image synthesis 
simulation

4.6 Optimization Assigning S/N Ratio
Define the S/N ratio of the foreground and background by 
Equations (10), (11), and (15), and let Dwithin be defined as the 
dispersion of multiple backgrounds and Dbetween as the distance 
between the defect and the background. Introduce the parameter 
α that indicates the degree of image background removal so that 
optimization becomes possible with different S/N ratios 
assigned, and it is re-defined as Dwithin = xT [αQwin + (1–α) I ]x. 
Fig. 5 shows the results of optimization using SDP with the 
values of α assigned in 10 levels to the metal workpiece with 
hairline finish. It is shown that the S/N ratio (Dbetween/Dwithin) 
changes according to the degree of image background removal. 
α= 0 when contrast is highest in both foreground and 
background but α= 1.0 when S/N ratio (ratio of intensity 
between the foreground and background) is highest, where 
discriminability between the foreground and background is 
improved.

The reason why the lighting color changes when α=1.0 is 
that more favorable color is selected to make the background 
flat in the sense of the l2 distance involving the color channel of 
the image.

The contrast of the hairline finish of this workpiece is mostly 
determined by the intensity ratio balance of the coaxial light 
(center) and ring light (circumference). When the contrast is 
increased, only the coaxial light tends to be selected, and when 
the contrast is decreased, both the coaxial light and ring light 
are used. When value α increases, the lighting pattern becomes 
complicated, but it is possible to find a simpler lighting pattern 
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Fig. 5  Emphasizing results of defect on the hairline-finished metal surface when the degree of image background removal is changed (simulation vs. actual image)

Fig. 6  Results of maximizing contrast assigning exposure constraints while the mean pixel value maintained constant

with similar performance to these. The reason is that matrix F is 
near the rank deficient state and the lighting pattern bringing the 
same performance is not uniquely determined. This is the 
so-called overtraining condition, and to avoid such condition, 
the number of workpiece samples should be increased, the 
number of constraints of the pixel value (brightness) should be 
increased, or the appropriate basis illumination pattern H should 
be selected. In the lighting pattern with α= 1.0, the hairline 
finish becomes visible when the workpiece is turned by 90°, but 
the lighting pattern robust against turning of the workpiece can 
be obtained optimizing the base level luminescence pattern with 
the rotational symmetrical one.

4.7 Optimization Involving the Pixel Value (Brightness)
Fig. 6 shows the example where optimization is made to 
maximize contrast by multi-objective optimization specifying 
the pixel value (brightness). As the coaxial light provides the 
highest contrast in the case of a hairline finished metal surface, 
only the coaxial light is selected in the left column where 
constraints in exposure is lowest. The constraints of the 

exposure time gradually increase towards the right and intensity 
of illumination decreases accordingly when only the coaxial 
light is used, which will make the specified pixel value 
unattainable. Accordingly, optimization is made to maximize 
brightness by illuminating multiple lights at the same time, and 
as a result, it is confirmed that contrast is sacrificed. This means 
that the lighting is optimized to maximize the contrast within 
the range where the specified brightness is produced. This is the 
advantage of this technique to obtain optimum lighting by 
image synthesis overlooking the tradeoff between the exposure 
level and contrast only by numerical computation in multi-
objective optimization.

5. Conclusions
The lighting simulation technique using image synthesis for the 
optimization problem of the multi-CH lighting system for visual 
inspections is proposed in this paper. It is demonstrated that this 
technique enables accurate lighting simulation reducing the 
number of required images taken for optimization exponentially 
to the logarithmic order of the number of evaluation patterns. 
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The proposed technique is the basic technique that realizes 
automatized and off-site teaching operations that include the 
inspection parameter setting.

The authors considered expanding this technique to the 
simultaneous optimization, including multi-shot imaging 
inspection and a subsequent inspection, improving usability in 
multi-objective optimization, and handling of dispersion outside 
of the sample range by optimization of lighting using 
simulations of workpiece dispersion.
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