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We are developing a ping-pong robot called FORPHEUS that can keep a table tennis rally going and interact with 
people to generate an appeal for harmonization, which is the future relationship between humans and machines. 
Although the performance of the table tennis robot has been improving year by year, a player’s motivation to 
maintain a rally tended to decrease because of the tendency for rallies to be monotonous.

Therefore, we propose an interaction system to control the player’s motivation to continue a rally. In our work, 
the table tennis robot can measure a player’s motion and vital signals to estimate skill and emotion. In addition, 
we also implemented a ball-return plan to make the player feel comfortable and focused on using the Meta AI of 
Square Enix. This system controls the motivation to continue a rally by more than 80% of players and realizes 
harmonization on teams of bringing out the players’ maximum capabilities and promoting their growth.

1. Introduction
Under the philosophy championed by Kazuma Tateishi, 
OMRONʼs founder, which goes, “Man should leave what 
machines can do to machines and enjoy activities in more 
creative areas,” we have considered the man-machine 
relationship. We expect the man-machine relationship to change 
in step with social and technological changes and go through 
the substitution, collaboration, and harmony stages in that order. 
The substitution stage means the state in which machines 
perform tasks conventionally carried out by human hands. 
Meanwhile, the collaboration stage refers to a state in which 
machines perform tasks together with humans to suit the latterʼs 
purposes. Finally, the harmony stage is a state in which 
machines understand human intentions and assist and allow 
humans to perform more creative activities.

We have developed FORPHEUS, a ping-pong robot able to 
continue rallying with a human player, to spread the concept of 
the future man-machine relationship or harmony that OMRON 
envisions1)-3). Following the start of its development in 2013, 
our first-generation ping-pong robot made its debut at the open 
public exposition for the 2014 CEATEC Japan. Since then, this 
robot has been evolving every year through development efforts 
to add new functions and improve its performance.

We consider that the following two types of technologies are 
necessary to build a ping-pong robot embodying man-machine 
harmony:

(1) Technologies for robots to perform ping-pong tasks
E.g., high-speed, high-accuracy ping-pong ball measure-

ment technology; and
 high-speed, high-accuracy robot control technology

(2) Technologies for understanding humans and intervening 
with them
E.g., motion analysis technology,

emotion estimation technology, and
human-machine interaction technology

The technologies listed in (1) have long been research 
subjects in computer vision, robotics, and other related fields. 
For the ones listed in (2), studies are underway in a wide range 
of disciplines, including computer vision, cognitive psychology, 
and entertainment. What is considered of particular importance 
to cause human behavioral changes is to induce motivation. As 
a method of achieving this purpose, gamification is attracting 
attention.

For people to give full play to their performance and accelerate 
their growth, we consider it necessary to keep them highly 
motivated. For conventional ping-pong robots, technology 
developments have been promoted, focusing on the technologies 
given in (1), to enable robots to exchange rallies with human 
players varied in skill level from beginner to advanced. In 2016, 
our robot was equipped with a function for determining human 
playersʼ skill levels based on their motions and for exchanging 
rallies accordingly. As a result, however, monotonous rallies often 
occurred and reduced the motivation of human players.
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Square Enix implements a technology called Meta AI in 
games to offer the fun of games designed to change opponent 
charactersʼ behaviors depending on the playerʼs emotion4),5). For 
example, the Meta AI implemented in Final Fantasy® XV can 
monitor the playerʼs status and those of the associates and 
dispatch an associate optimal for assistance from those nearby 
not engaged in a battle when the player is in a fix6). In this way, 
the Meta AI can recognize and change the whole game situation 
to stimulate the playerʼs emotion. Thus, it can keep the player 
motivated without making the person bored.

We considered the possibility whether a ping-pong robot 
equipped with Meta AI could have motivation control (Moti-
Ctrl) over the player during a ping-pong rally. The Meta AI is 
an algorithm built for an ideal environment of a game, which is 
relatively free from external noise. On the other hand, ping-
pong playersʼ motions, which are vigorous and cause strong 
external disturbances, posed a challenge to the Meta AIʼs direct 
implementation.

To provide a Moti-Ctrl function through the Meta AIʼs 
implementation7), we developed a technology for determining 
the detailed human skill level of human players based on their 
motions and another technology for obtaining human playersʼ 
vital data without making contact and estimating their emotions. 
This paper presents a report on these technologies.

In what follows, Section 2 describes the configuration of our 
ping-pong robot, Section 3 presents the verification experiment 
we performed to evaluate this Moti-Ctrl function, and finally, 
Section 4 presents the conclusions and future prospects.

2. Technologies required for ping-pong rallies
Our ping-pong robot consists mainly of an industrial robot built 
in-house and general-purpose equipment, such as our 
proprietary cameras, to promote our products and technologies 
(Fig. 1):

Fig. 1  Configuration of the ping-pong robot

The following subsections present a measurement technology 
for ping-pong ball (hereafter “ball”) positions, human playerʼs 
motions, and racket positions and attitudes, future trajectory 
prediction technology for the ball, and a robotʼs return shot-
related motion generation technology as the technologies 
required for the ping-pong robot to play ping-pong with human 
players.

2.1 Measurement of ball positions, human motions, and 
racket positions and attitudes

For ball position measurement, the robot uses two industrial 
RGB cameras (STC-MCS163U3V, OMRON) with a resolution 
of 1440×1080 pixels and a frame rate of 220 fps. The cameras 
are mounted on the left and right sides of the robotʼs head to 
include the ping-pong tableʼs whole area in the field of view. 
RGB images captured by the two cameras undergo conversion 
into HSV color space images robust to lighting variations 
followed by binarization and noise removal. Then, the camerasʼ 
internal parameters obtained beforehand are used to correct lens 
distortions. After then, the epipolar constraint, which is a 
relation holding between the same points in images taken of a 
subject from different angles, is used to narrow down the ballʼs 
candidate points in the left and right images and identify its 
center of gravity. Finally, the ballʼs 3D position is calculated 
based on the stereo method using the camerasʼ external 
parameters8).

For human motion measurement, the robot is equipped with 
two depth cameras (RealSense D415, Intel) with a resolution of 
640×360 pixels and a frame rate of 90 fps. The human playerʼs 
motions in ping-pong are large and tend to cause self-occlusion, 
or the partial concealment of one of oneʼs body parts behind 
another, to occur in images taken by a single camera. Therefore, 
a camera is installed at either end of the ping-pong table net to 
capture images of the human ping-pong playerʼs upper body 
from two different points of view. To each depth image captured 
by the two cameras, skeleton estimation middleware (Nuitrack, 
3DiVi) is applied to obtain the 3D positions and the reliability 
of 12 positions in the upper-body skeleton9). Then, based on 
each skeletal positionʼs reliability, the human playerʼs dynamic 
model constraints are added to calculate the skeletal position 
with high accuracy10).

For the human-held racketʼs position and attitude 
measurement, the robot relies on an industrial RGB camera 
(STC-MCS163U3V, OMRON) with a resolution of 1440×1080 
pixels and a frame rate of 220 fps. This camera is mounted at 
the center of the robotʼs head to capture images from diagonally 
above the human player. The racket is affixed with nine marker 
seals to calculate the center-of-gravity position using the same 
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method as in measuring that of the ball. With a small number of 
markers, planar attitude estimation becomes ambiguous. Hence, 
a perspective-n-point (PnP) problem with the degree of freedom 
reduced by removing the rotational components around the 
normal to the racket surface is solved to obtain a unique 
racketʼs position and attitude11).

2.2 Ball trajectory prediction
In ping-pong, the ball moves so fast that a robot controlled 
adaptively to the ballʼs movement cannot respond in time. 
Therefore, after ball position measurement, the ballʼs future 
trajectory must be determined to predict the robotʼs ball hitting 
position, and the robot must move to that position. The ball 
motion during a rally can be approximated using a model of 
aerodynamic forces acting around a spherical body traveling in 
the air. Our previously developed technique is used to calculate 
the ball speed and spin speed from the change in the ballʼs 
time-series position measured. Besides, a collision model for 
describing the collision between the ball and the ping-pong 
table is used to predict the post-collision ball trajectory3).

2.3 Robot’s return-shot planning
The ballʼs future trajectory serves as the basis for determining 
the ball hitting point with the robotʼs operational range taken 
into consideration. To the preset target ball return position, 
speed, and spin speed for the human playerʼs side of the ping-
pong table, the aerodynamic model used in Subsection 2.2 is 
applied to simulate the backward evolution of time and obtain 
the speed and spin to be achieved by the ball immediately after 
being hit by the robot. Then, a ball-racket collision model based 
on these data and the ball speed and spin immediately before 
getting hit is used to calculate the racket speed and attitude at 
the time of ball hitting3).

3. Technologies required to provide Moti-Ctrl
We developed the Moti-Ctrl function, aiming for the robot to 
make the human player comfortable and more concentrated 
through interactions to keep the person motivated to continue 
rallying. This function first estimates the human playerʼs skill 
level from the ball and skeleton data. The function calculates 
the limit speeds of the shots that the human player can return 
with forehand or backhand. The Moti-Ctrl function also 
performs emotion estimation from the vital data available from 
the ballʼs video images and those of the playerʼs face. Based on 
Russellʼs circumplex model of affect12), the pleasure/displeasure 
scale score and the arousal/non-arousal scale score are 
calculated. Finally, the values calculated through the skill level 
estimation and emotion estimation are used to determine the 

position and speed of the ball return from the ping-pong robot 
based on the concept of the Meta AI (Fig. 2):

Fig. 2  System flow of the Moti-Ctrl function

The following subsections present a technology for 
estimating human playersʼ ping-pong skill levels, another 
technology for contactless obtaining human playersʼ vital data, 
yet another technology for estimating human playersʼ emotions, 
and a return-shot planning technique for keeping human players 
motivated as the technologies required to provide the Moti-Ctrl 
function.

3.1 Skill level estimation
To enhance human ping-pong playersʼ motivation to continue 
rallying, the robot must first quickly adjust the degree of rally 
difficulty (ball speed, course, spin speed, randomness, etc.) to 
suit each trial playerʼs ping-pong skill level. In 2016, a deep 
learning-based rally level adjustment function was implemented 
in our ping-pong robot. This function, however, depended on 
the designerʼs subjective view for annotations and posed the 
problem of failing to set an appropriate rally difficulty level for 
each trial player. Hence, for the skill level estimation function 
developed this time, the degree of difficulty of the robotʼs return 
shot bordering on whether a trial player can manage to return a 
shot is defined as the objective reference index. Our aim this 
time is to estimate this degree of difficulty from a small number 
of ping-pong rallies. Considering that many of the trial players 
are beginners this time, we pay attention to the basic difficulty 
parameters of ball return speed and ball return course to 
estimate the robotʼs maximum ball return speed that allows 
more than a certain degree of probability for the trial player to 
return a shot. This estimation is to be performed for both 
forehand and backhand shots.

The trial play time available in a demonstration space at an 
exposition is short. Accordingly, skill level estimation must be 
performed based on a small number of ping-pong rallies. 
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Attention is then paid to the motion data, especially the skeleton 
data obtained in Subsection 2.1, to perform this estimation 
successfully based on a prior learning method. Fig. 3 shows the 
flow of the skill level estimation process. First, the trial playerʼs 
swing motion is segmented to determine by the motion 
classification method whether it is a forehand or backhand 
swing. Next, for each swing type, the maximum ball return 
speed is estimated based on the learning method.

Fig. 3  System flow of skill level estimation

The ball position time-series data obtained in Subsection 2.1 
are used for swing motion segmentation. The duration from the 
time of the robotʼs return shot reaching the human playerʼs side 
of the ping-pong table until that of the human playerʼs return 
shot reaching the robotʼs side of the ping-pong table is defined 
as the duration of a single swing from which to extract a series 
of human playerʼs skeletal positions. For motion classification, a 
hidden Markov model (hereafter “HMM”)-based learning 
method is used based on its past track record13) and its 
upgradability in future developments. From among the skeleton 
data obtained from the swing motion segmented this time, 
attention is paid to the time-series data x of the three 3D 
position vectors in the waist-to-shoulder, waist-to-elbow, and 
waist-to-wrist directions where major motions occur during a 
rally. The skeleton data of various trial playersʼ forehand and 
backhand swings are obtained beforehand to retain an HMM for 
each swing type (MFore and MBack). The HMM to be used is the 
left-to-right type HMM effective at recognizing unidirectionally 
changing time-series data. When the swing time-series skeleton 
data x for a new trial player are obtained, whether the swing is 
forehand or backhand is determined using the following 
equation where s = {Fore, Back}:

 Swing =
∈

arg max ( | )
i s

iP Mx  (1)

Next, an estimation is performed of the robotʼs maximum 
ball return speed that allows more than a certain degree of 
probability for the trial player to return a shot onto the table. 
This estimation is performed for each of the forehand and 
backhand types of swings made by the trial player. As the first 
step, the maximum ball return speed is defined. Fig. 4 shows the 

data of a ping-pong rally in which the shots returned by the 
robot at various speeds in various courses are hit back by a trial 
player aiming at the target at the center of the opponentʼs side 
of the table. The maximum ball return speed is calculated based 
on the relative error between the target and the point of impact. 
More specifically, as shown in Fig. 4, the pass/fail of each 
return shot is determined based on the error threshold set as 
0.75 m from the target. From the data for approximately 20 
points near the target, the success probability for the trial 
playerʼs return shot for each of the robotʼs ball return speeds is 
calculated every 0.5 m/s to obtain a graph for the success rate 
for the trial playerʼs return shots, such as the one in Fig. 5. The 
robotʼs maximum ball return speed for when the success rate for 
the trial playerʼs return shots is below 85% is defined as the 
maximum ball return speed (Fig. 5).

Fig. 4  Data collection results and return-shot pass/fail determination

Fig. 5  Calculation method for the maximum ball return speed

As shown above, the maximum ball return speed can be 
determined correctly only when actual rally results are available 
from many shots of various speeds. Expositions, however, 
cannot be expected to afford sufficient time for a trial player to 
return so many shots. Accordingly, this time, we aim for the 
robot to learn beforehand the relationship between a single 
swing motion and the maximum ball return speed and estimate 
the maximum ball return speed from a single swing motion 
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without requiring a new trial player to hit many shots.
The prior learning is performed according to the following 

steps:
The first step is to obtain data from many participants. This 

time, we collected prior data from 30 healthy individuals aged 
18 to 50 years old (including five women). This group can be 
broken down by ping-pong skill level into five super-advanced-
level participants currently active as table tennis club members, 
five advanced-level participants formerly active as table tennis 
club members, 12 intermediate-level participants occasionally 
playing ping-pong as a hobby or for other purposes without 
belonging to a table tennis club, and eight beginner-level 
participants with almost no experience in table tennis. Each 
participant was asked to perform a ping-pong rally task to allow 
ball and skeleton data collection. In this task, the participants hit 
back the robotʼs return shots at various speeds in various 
courses, aiming at the target at the center of the opponentʼs side 
of the table. The second step is to build a regression learning 
model producing the maximum ball return speed as the output 
from the input data consisting of the time-series skeleton data of 
each of the trial playersʼ swings; this model is built using a 
neural network for each of the forehand and backhand types of 
swings. The input data to be used are the time-series skeleton 
data likely to better reflect skill levels, i.e., the 3D time-series 
data on the shoulder-to-elbow and elbow-to-wrist positions and 
the time-series data on the shoulder and elbow joint angles. 
Besides, these data are subjected to low-pass filtering for noise 
removal, skeleton normalization for smoothing physique 
differences among trial players, standardization for removing 
the effects of swing differences due to the differences in the 
position of the ball return from the robot, and time 
normalization for entering inputs into the neural network. 
Assuming that the maximum ball return speed remained 
unchanged during data collection, labeling was performed so 
that all the output data were same for the intrapersonal multiple 
input data (Table 1). These input and output data were used for 
the prior learning of the regression model.

Table 1  Relationship between the input and output data

Person A B ...

Data Pair 1 ... 10 11 ... 20 ...

Ball  Speed  from  the 
Robot 3.0m/sec. ... 8.5m/sec. 4.5m/sec. ... 7.0m/sec. ...

Swing Skeleton Swing A ... Swing J Swing K ... Swing T ...

Maximum  Ball  Return 
Speed 8.0m/sec. 3.0m/sec. ...

Considering its use in a neural network, the dataset obtained 
from 30 participants is small. Hence, an approximately 
16-node, three-layer, fully connected model with a small 

number of parameters is used so that the input layer takes a 
form that allows parallel entry of all time-series data while the 
output layer takes a form capable of producing single-value 
outputs as the regression results for the maximum ball return 
speed. For the actual estimation, segmented time-series skeleton 
data provide the input to produce the output as the maximum 
ball return speed during each rally. The average value of the 
outputs from the most recent ten rallies is calculated for each of 
the forehand and backhand types of swings as the estimated 
value of the maximum ball return speed. Note that the function 
presented above estimates the maximum ball return speed based 
on the data that assume that the trial player returns shots, 
aiming at the center of the ping-pong table. Hence, this function 
cannot apply to trial players that hit smash shots for no reason 
or intentionally return shots at the tableʼs corners.

3.2 Contactless vital data measurement
For vital data measurement, our robot relies on an industrial RGB 
camera (STC-MCS891U3V, OMRON) with a resolution of 
4096×2160 pixels and a frame rate of 40 fps. This camera is 
mounted at the center of the ping-pong table net to capture frontal 
images of the human playerʼs face. The video images of the 
human playerʼs face are used to estimate facial expressions, blink 
rate, and heart rate contactlessly. Fig. 6 shows the whole flow:

Fig. 6  System flow of vital data measurement

The OKAO Vision14) middleware for image-based face 
recognition is used to obtain the face region, the smile degree, 
the seriousness degree of the face, and the left and right eye 
blink rates. The number of times the maximum value of the 
average values of left and right eye blink rates during a certain 
length of time exceeds a preset threshold is defined as the 
number of eye blinks.

Besides, remote-photoplethysmography (rPPG) is used for 
heart rate estimation from facial skin region images. Hemoglobin 
contained in blood has its absorbance peak in the wavelength 
range of 500 to 600 nm. Hence, the analysis of the luminance 
change in this wavelength range allows heart rate estimation. The 
present study considers the skin diffuse-reflection model in Fig. 7 
as the method of heart rate estimation15).
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Source: Reference 15)

Fig. 7  Skin diffuse-reflection model15)

Human skin consists of two layers, epidermis and dermis 
thereunder. Blood vessels run all over the hypodermal tissue 
underlying the dermis, and some capillary vessels reach the 
dermis. When light reaches the epidermis, some of the light 
penetrates inwards, and the rest is reflected. Some of the light 
penetrating inwards penetrates the dermis and reaches the blood 
vessels in the hypodermal tissue. The light reflected there passes 
through the dermis and the epidermis and is diffused outside the 
epidermis. The two types of light, one reflected from the 
epidermis and the other diffused from the epidermis, are 
captured by the camera. Therefore, the latterʼs selective 
extraction from the obtained data allows the detection of heart 
rate-dependent luminance changes. Fig. 8 shows the flow of 
heart rate estimation:

Fig. 8  System flow of heart rate estimation

From the face region trimmed by the OKAO Vision, the skin 
region is extracted by setting thresholds in the YCrCb color 
space, which is robust to lighting variations and widely used for 
skin color determination. Then, the RGB values in the skin 
region are averaged respectively, followed by the normalization 
of the time-series data covering a certain length of time, to 
remove the trends present in the data. Because the situation of 
our interest is ping-pong, which involves vigorous motions, a 
plane-orthogonal-to-skin (POS) algorithm robust to the subjectʼs 
motions is employed to extract heart rate-dependent signals 
from the time-series data15). After that, a band-pass filter for the 
1-to-3 Hz range corresponding to the normal heart rate range of

60 to 180 bpm is applied to remove noise from pulse signals. 
Next, to perform a frequency analysis without losing the 
signalʼs time-domain data, the Gabor wavelet transform, which 
uses a Gaussian function as the window function, is performed 
to calculate the spectrogram. Finally, from among the extremal 
values present in the range of 1 to 3 Hz, the highest value is 
extracted as the heart rate frequency.

3.3 Emotion estimation
Studies on human emotion estimation are widely pursued in the 
field of human-machine interaction. The methods used fall 
mainly into two types: methods of the first type are used to 
estimate emotions from surface layer data, such as facial 
expressions and pupil size changes, while those of the second 
type are employed to estimate emotion based on deep layer 
data, such as heart rates and brain waves. In sports, performance 
is considered strongly correlated with emotions. Therefore, the 
present study combines surface layer data, deep layer data, and 
ping-pong performance data to estimate emotions with high 
accuracy. The present study adopts as its emotion model a 
Russellʼs circumplex model expressed by two scales—one 
called a pleasure/displeasure scale and the other called an 
arousal/non-arousal scale12). The pleasure/displeasure scale 
score x and the arousal/non-arousal scale score y are calculated 
using the number of continued rallies c and the human player-hit 
ball velocity v, which are obtained as in Subsection 2.1, and the 
human playerʼs smile degree s, seriousness of the face degree n, 
heart rate variation value h, and the number of eye blinks b, 
which are obtained as in Subsection 3.2. For easy 
implementation and to guarantee real-timeness, we assume this 
time that the input and output data are in a simple linear 
relation, which is expressed by Equation (2):

x
y

A s n h b c v T
⎡

⎣
⎢

⎤

⎦
⎥ = [ ] (2)

where A is a 2 × 6 matrix and is composed of the elements in 
Equation (3):

A
a a a a

a a a a
=

⎡

⎣
⎢

⎤

⎦
⎥

1 3 5 6

8 10 11 12

0 0
0 0

(3)

It is known that the smile degree and the heart rate variation 
correlate strongly with pleasure/displeasure and have only minor 
effects on arousal/non-arousal and that the seriousness of the 
face degree and the number of eye blinks correlate strongly 
with arousal/non-arousal and do not have significant effects on 
pleasure/displeasure16). Therefore, the values of the elements 
with minor effects are set to 0. Presented below is how to obtain 
the values of the other elements. Thirteen beginner players are 
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asked to keep rallying with the ping-pong robot for about five 
minutes so that the robot can obtain their rally data and vital 
data. The ping-pong robot is programmed to randomize the 
speed and course of its return shots regardless of the 
participantsʼ skill level. Immediately after their rally breaks, the 
participants answer a questionnaire as a rally-by-rally record of 
changes in the pleasure/displeasure and arousal/non-arousal 
valences. Emotions are difficult to make an absolute evaluation 
of and hence are evaluated relative to the emotions during an 
immediately preceding rally. The expected values of changes in 
pleasure/displeasure and arousal/non-arousal in response to 
changes in the rally data and vital data are calculated for use as 
the values of the elements of matrix A. As a result, elements a1, 
a3, and a8 take a positive value, respectively, while element a10 
takes a negative value. These results are qualitatively equivalent 
to the results reported by a preceding study16).

3.4 Return-shot planning technique
The target ball return position, speed, and spin speed for the 
human playerʼs side of the ping-pong table need to be preset to 
determine the robotʼs ball return action as in Subsection 2.3. 
This time, a fixed ball spin speed, a variable ball return 
position, and a variable ball return speed are used to improve 
the human playerʼs motivation to keep rallying. The human 
playerʼs emotions are continuously monitored, along with 
reference to the Meta AI4) designed to affect emotions, for the 
robot to change its return-shot plan to suit the changes in the 
human playerʼs emotions. The ball return speed is made to 
change from the initial value, which is the output value in 
Subsection 3.3, in response to the changes in the human 
playerʼs emotions. Fig. 9 shows the algorithm of this function:

Fig. 9  System flow of return-shot planning

Changes in the human playerʼs emotions from an 
immediately preceding swing mainly fall into the following 
three patterns:

(1) Both the pleasure scale score and the arousal scale score 
increase;

(2) The pleasure scale score increases while the arousal scale 
score decreases; and

(3) The pleasure scale score decreases.

For pattern (1), the current return-shot plan continues without 
changing because the current plan is just right for the human 
player and has improved the motivation to continue rallying. 
For Pattern (2), the ball return speed needs to be increased 
because the current return-shot plan feels easy and boring. 
Conversely, for Pattern (3), the ball return speed needs to be 
decreased because the current task feels difficult and unpleasant. 
When Pattern (2) or (3) continues a certain number of times, the 
ball return course is switched to improve the human playerʼs 
motivation to keep rallying.

4. Demonstration experiment
This section describes the effectiveness evaluation for the Moti-
Ctrl function proposed above.

4.1 Experiment method
At our request, 27 beginner players kept rallying for five 
minutes (with the target ball return position and speed fixed) for 
both when the Moti-Ctrl function was enabled and disabled. 
After then, they were asked to answer and submit the following 
three-item questionnaire:

(1) In which of the cases below did you rally more 
pleasantly?

(2) In which of the cases below did you rally with higher 
concentration?

(3) In which of the cases below do you want to have another 
rally?

Items (1) and (2) relate to the pleasure/displeasure scale and 
the arousal/non-arousal scale, respectively. Meanwhile, Item (3) 
is set as a question on the motivation to have a rally. We asked 
the participants to have a sufficient number of rallies before the 
experiment so that their familiarity with ping-pong would not 
affect the questionnaire results. Besides, we conducted the 
experiment, with the order of the rallies with and without the 
Moti-Ctrl function being randomized without providing the 
participants with prior knowledge about the function.

4.2 Experiment results and discussions
Fig. 10 shows the three-item questionnaire results:
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Fig. 10  Questionnaire results for with and without the Moti-Ctrl function

The participants showed a tendency to have a rally more 
pleasantly with the Moti-Ctrl function disabled (63%). With the 
Moti-Ctrl function enabled, they showed a tendency to rally 
with higher concentration (96%) and have higher motivation to 
continue rallying (81%).

With the Moti-Ctrl function enabled, the participants did not 
show a tendency to rally pleasantly, probably because of a 
problem with the reflection of feedback in the return-shot plan. 
This function upsets the rhythm of the rally, probably making its 
continuation difficult. As a result, the Moti-Ctrl function may 
have reduced the proportion of participants that enjoyed rallying 
pleasantly. Besides, the participants may have differed in their 
intention to rally with the ping-pong robot: for example, some 
may have wanted to win, some others may have wanted to 
continue rallying, and some additional others may have wanted 
to wait and see the robotʼs behavior. Consequently, the pleasure/
displeasure scale may have become less correlated with the 
motivation to continue rallying. We consider the following three 
challenges necessary to be addressed for the future 
improvement of the motivation of a broader spectrum of human 
players:

(1) An ability to understand human intentions;
(2) Enhanced accuracy of obtained data; and
(3) Interaction techniques other than return-shot planning.

Regarding Challenge (1), time-series data on human playersʼ 
motions and rally patterns will provide a useful basis for 
estimating human intentions. A robot able to understand human 
playersʼ intentions will contribute to maintaining their 
motivation in line with their intentions. Regarding Challenge (2), 
we expect more accurate emotion estimation to be achievable by 
improving the accuracy of vital data measurement by contact-
type devices, obtaining breath or perspiration data by a new 
sensor, and estimating emotions from obtained time-series data. 
Moreover, the skill level estimation accuracy will be improved 
by obtaining and taking into consideration vital data, such as 
playersʼ line-of-vision data or muscle activity data, besides the 

ball data and playersʼ motion data. Regarding Challenge (3), we 
will explore new interactions based on visual, auditory, and 
tactile senses, taking into account not only the robotʼs ball return 
action but also the conditions of the rally and the human player.

5. Conclusions
For the present study, we developed an interaction system able 
to improve human playersʼ motivation to continue a ping-pong 
rally. We implemented a Meta AI-based return-shot planning 
method for estimating skill levels and emotions from 
contactlessly obtained human motion data and vital data. As a 
result, we successfully improved the motivation of more than 80 
percent of trial players.

Our aim for the future is to overcome the challenges 
presented in Subsection 4.2 to improve the motivation of a 
broader spectrum of human players. Besides, bearing in mind 
the characteristics of man-man and man-machine relationships, 
we will develop interactions for improving these relationships 
through ping-pong rallies to promote further man-machine 
harmony.

References
 1) K. Yamada, “Robot table tennis tutor as an example of ʻHarmony 

between Human and Robotʼ,” (in Japanese), J. Inst. Electr. Eng. 
Jpn., vol. 137, no. 2, pp. 81-84, 2017.

 2) Y. Nishina, M. Suwa, and M. Kawade, “Application of image 
sensing and AI technologies to table tennis robots,” (in Japanese), 
O plus E, vol. 39, no. 12, pp. 1195-1200, 2017.

 3) K. Asai, M. Nakayama, and S. Yase, “The ping-pong robot to return 
a ball precisely ~ Trajectory prediction and racket control for 
spinning balls ~,” (in Japanese), OMRON TECHNICS, vol. 51, no. 
1, pp. 174-179, 2019.

 4) Y. Miyake and Y. Mizuno, “Game design revolution using artificial 
intelligence (Meta AI),” Computer Entertainment Developers 
Conf., 2017, https://cedil.cesa.or.jp/cedil_sessions/view/1757 
(accessed Jan. 28, 2021).

 5) D. Satoi and Y. Mizuno, “Changing the game: Measuring and 
influencing player emotions through Meta AI,” Game Developers 
Conference, 2019, https://schedule2019.gdconf.com/session/
changing-the-game-measuring-and-influencing-player-emotions-
through-meta-ai/861775 (accessed Jan. 28, 2021).

 6) Square Enix Co., Ltd., “FFXV” AI Team,  in Artificial Intelligence 
of FINAL FANTASY® XV - Future as Seen from Game AI (in 
Japanese), Tokyo: Born Digital, 2019, pp. 116-117.

 7) Y. Miyake, M. Nakayama, K. Fujita, and Y. Mizuno, “Application 
of Game AI Technology to Ping-Pong Robot FORPHEUS,” (in 
Japanese), Computer Entertainment Developers Conf., 2020, https:// 
cedec.cesa.or.jp/2020/session/detail/s5e83300d562e1 (accessed 
Jan. 28, 2021).

 8) M. Nakayama, “Compilation of OMRONʼs Core Technologies 
Sensing & Control + THINK, the Ping-Pong Robot FORPHEUS 

NAKAYAMA Masamune et al. Ping-Pong Robot to Control Motivation of a Human Player

8



NAKAYAMA Masamune et al. Ping-Pong Robot to Control Motivation of a Human Player

— Toward the Achievement of Man-Machine Harmony,” (in 
Japanese), O plus E, vol. 469, 2019, https://www.adcom-media.
co.jp/report-iss/2019/09/25/32422/ (accessed Jan. 28, 2021).

 9) NUITRACK, “Nuitrack full body skeletal tracking software,” 
https://nuitrack.com/ (accessed Dec. 21, 2020).

10) K. Yeung, T.  Kwok, and C. Wang, “Improved skeleton tracking by 
duplex kinects: A practical approach for real-time applications,” J. 
Comput. Inf. Sci. Eng., vol. 13, no. 4, p. 041107, 2013.

11) G. Schweighofer and A.  Pinz, “Robust pose estimation from a 
planar target,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, 
no. 12, pp. 2024-2030, 2005.

12) J. Russell, “A circumplex model of affect,” J. Personal. Soc. 
Psychol., vol. 39, no. 6, pp. 1161-1178, 1980.

13) J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in 
time-sequential images using hidden markov model,” Proc. 1992 
IEEE Computer Society Conf. Computer Vision and Pattern 
Recognition, Champaign, IL, USA, 1992, pp. 379-385.

14) OMRON, “OKAO Vision,” (in Japanese), https://plus-sensing.
omron.co.jp/technology/ (accessed Dec. 21, 2020).

15) W. Wang, D. Brinker, S. Sander, and D. Gerard “Algorithmic 
principles of remote PPG,” IEEE Trans. Biomed. Eng., vol. 64, no. 
7, pp. 1479-1491, 2017.

16) Y. Ikeda and M. Sugaya, “Estimate emotion method to use 
biological symbolic information preliminary experiment,” Lect. 
Comput. Sci. (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), vol. 9743, pp. 
332-340, 2016.

About the Authors

NAKAYAMA Masamune
Technology Research Center
Technology And Intellectual Property H.Q.
Specialty: Image Processing, Mechanical engineering, 
Biomecanics

KURISU Takanori
Technology Research Center
Technology And Intellectual Property H.Q.
Specialty: Motion analysis, Human Skill Augmentation

MIZUNO Yuta
AI Unit
Advanced Technology Division
SQUARE ENIX CO., LTD.
Specialty: Meta AI

MIYAKE Youichiro
AI Unit
Advanced Technology Division
SQUARE ENIX CO., LTD.
Specialty: AI in Digital Games

YASE Satoshi
Technology Produce Center,
Technology And Intellectual Property H.Q.
Specialty: Electrical and electronic engineering

The names of products in the text may be the trademarks of each company.

9


