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Recently, because of the growing need for automation of monitoring, machine learning has become widely used 
in the social systems domain. However, the issue of machine learning is that the pre-trainedmodel provides poor 
performance when the environment changes. Especially in the social systems domain, there are various 
environmental changes such as place and camera angle, and additional learning through scene adaptation is 
essential to achieve the required accuracy.

Therefore, we tried to develop a method for more efficient scene adaptation. Until now, the cost to collect 
images of the new scene and label the ground truth was substantial. In this paper, we investigated a method to 
automatically generate images and pseudo ground-truth labels for training through image synthesis. The 
experiment was conducted for vehicle detection on highways and at intersections. As a result, we were able to 
generate a training dataset for less cost while achieving accuracy close to that of manually label . This method 
can be expected to further automation.

1. Introduction
In the domain of social systems, needs are mounting for 
automated monitoring to solve the current labor shortage. 
Automation needs are becoming particularly visible for such 
purposes as blind personʼs white stick detection, wheelchair 
detection, on-track fallen object detection, vehicle number 
authentication, traffic volume surveys, and wrong-direction 
traveling vehicle detection1). Monitoring is expected to involve 
various scenes and purposes. Hence, the required functions are 
also diverse, including object detection, behavioral tracking, and 
event detection. Assuming mainstream fixed cameras, we aim to 
provide object detection, the most central function of 
monitoring.

Object detection may be provided by having a model learn 
large amounts of data with labeled objects of interest for 
detection. Generally, machine learning-built models are, 
however, known to have the drawback of performing more 
poorly for data obtained in environments different from training 
data collection environments. This problem supposedly stems 
from data distribution differences due to environmental 
differences2).The fixed camera-based object detection model 
discussed herein, for example, has the drawback of showing 

reduced detection accuracy when the shooting location or the 
camera angle conditions differ from those of the training data. 
In this case, the model would perform better after additional 
learning of training data prepared for each scene of its 
introduction. The problem is that manual labeling for an object 
detection model involves human checking of each object region 
in the images, followed by manual label of their coordinates, 
thereby incurring considerable costs. Especially in the domain 
of social systems, a diverse range of environmental differences 
is expected, such as shooting locations or camera angle 
conditions, thereby making scene-by-scene additional learning 
realistically impractical. Hence, a technique is required for 
adapting the model to scenes through efficient additional 
learning.

2. Related studies
For efficient adaptation to scenes, a technique was proposed for 
generating training data from combinations of separately 
prepared foregrounds and backgrounds. T. Hodan et al. 
proposed a technique for pasting computer-generated 3D model 
objects onto various backgrounds in real image data while 
taking into consideration how such objects were exposed to 
light and how they overlapped one another3). G. Georgakis et al. 
proposed a technique for pasting foregrounds, in other words, 
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object images shot at various locations by cameras mounted on 
autonomous traveling robots, onto backgrounds, in other words, 
images shot by the robots in scenes to which to adapt the model 
while taking into consideration the depth information of the 
backgrounds4).

These techniques are built on the implicit premise that 
foregrounds are obtained from scenes different from those to 
which to adapt the model. Moreover, because of the assumption 
that foregrounds and backgrounds differ from each other in 
scenes from which they are obtained, these techniques need 
high-volume computing to perform pasting without any pasting 
boundaries, shadows, or any other causes of visual 
awkwardness. For instance, T. Hodan et al.ʼs technique needs 
120 seconds per image to generate a 640×480-pixel image and 
a ground-truth labels using a 400-node CPU cluster.

Hence, we propose a technique that assumes the acquisition 
of both backgrounds and foregrounds from identical scenes, in 
other words, ones to which to adapt the model, to generate 
images and ground-truth labels rapidly by following easy steps 
for specifying the coordinates and size for foreground pasting. 
This technique relies on neither manual labeling nor high-
volume computing to enable training data generation, as well as 
additional learning by a model adapted to each specific scene.

3. About our proposed technique
Our proposed technique consists mainly of the following three 
processes. In the first process, a background and foregrounds 
are extracted respectively from each on-site image, to which the 
model should adapt, and are then stored in a database. In the 
second process, the background and foregrounds stored in the 
database are combined in various patterns to generate many 
synthetic images and pseudo ground-truth labels. In the third 
and final process, the generated synthetic images and pseudo 
ground-truth labels are used for additional learning of the object 
detection model. (See Fig. 1 for the processing flow.)

Fig. 1  Processing flow of our proposed technique

3.1 Object detection algorithm
For object detection techniques, a variety of different algorithms 
have been proposed, including Faster R-CNN5), SSD6), and 

YOLO7). Among these algorithms, SSD features lighter and 
faster processing compared with the others. In the domain of 
social systems, high frame rate image processing is required to 
detect motor vehicles traveling at high speed or pedestrians 
whose direction of movement can change irregularly. Besides, 
in situations with an underdeveloped communication 
environment or for apps for robots and other apps requiring 
high real-time responsiveness, a model is required to run lighter 
than conventionally to rely on limited computing resources, 
such as on-site edge terminals, for image processing without 
communication with servers. From the above perspectives, we 
adopted SSD, suitable for use in the domain of social systems, 
as the object detection algorithm to verify our proposed 
technique.

3.2 Background and foreground extraction method
Background and foreground extraction are possible through a 
variety of methods, including manual operations, the 
background subtraction method, and pre-trained machine 
learning models.

We chose to generate average images from video still images 
and use the resulting images as background images. We decided 
to perform foreground extraction using Mask-RCNN8), a widely 
used method of instance segmentation, from the perspectives of 
efficiency improvement and accuracy. Mask-RCNN uses 
publicly available standard models not customized to any 
environment to extract portions determined as foreground 
regions. The boundaries between the foregrounds to be pasted 
and the background undergo transparency processing and 
smoothing for compatibilityʼs sake.

4. Verification of the foreground pasting method
4.1. Experimental data and evaluation method
Assuming pre-existing security cameras, we conducted 
experiments on an object detection model for detecting vehicles 
captured in the video still images shot by a fixed camera 
installed overlooking an expressway. Incidentally, the images for 
use in our experiments were shot with prior permission by the 
competent road administrator and were used and controlled 
according to our in-house regulations. (Image control number: 
G190035-000)

A 30-minute-long video was shot at the spot in Fig. 2 for use 
as the source material for training data generation. Then, after 
the lapse of a certain time, another 30-minute-long video was 
shot. A total of 1,800 still images were obtained at one per 
second from the footage for use as the evaluation data.
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Fig. 2  Video still image of the experimental site (expressway)

To obtain the background for synthesis, we generated 50 
average images from the 1,800 still images obtained at one per 
second from the 30-minute video and stored the generated 
average images in a database. The reason that we donʼt use only 
one average image is that, we followed this procedure to avoid 
such risks as the foregroundʼs inclusion in that one image. 
Because second-by-second foreground extraction results in 
repeated emergence of the same vehicles, we extracted 
foregrounds from a total of 450 still images, each obtained 
every 4 seconds from the video footage using Mask-RCNN and 
stored all these foregrounds in the database. Then, combining 
the background and foregrounds stored in the database, we 
generated 1,800 images and pseudo ground-truth labels, both of 
which were then learned trained by the model approximately 
350 times, respectively, to evaluate its performance.

The metric used for the performance evaluation was Average 
Precision (AP). This indicator is employed in PASCAL VOC9) 
or MS COCO10) datasets widely used for object detection and 
takes a value between 0 and 1. The proximity of this value to 1 
indicates that the degree of infrequency of misdetections and 
non-detections is very rare. In our experiments, with the 
ground-truth criterion threshold called IoU being fixed at 0.5, 
we used an AP of 0.5 calculated by 101-point interpolation AP. 
The AP of 0.5 is the average precision factor when the recall 
factor takes in the range of 0, 0.01, …, and 0.99, 1.0.
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Although shot to capture the region of interest for object 
detection, the road images in our experiments still contained 
unintended　area. For example, our original intention for this 
time was to perform performance evaluation using the 
expressway area in the middle of Fig. 2. The image, however, 
contains ordinary roads on both sides. Our experiments 
excluded such unintended regions from the range of object 
detection to limit the region for the AP calculation. (The 
calculation result values are indicated as AP (Mask) in the table 
below.)

4.2 Constraints on foreground pasting
Generally, training data for machine learning is desired to show 
a distribution similar to that of the data actually observed at the 
site into which to introduce the model. With training data with 
less variation than on-site observed data, the model would fail 
to detect correctly unlearned patterns as they occurred. On the 
other hand, if the training data contains data unobservable 
on-site in reality, such as flying wheeled vehicles or gigantic 
wheeled vehicles too large to exist in reality, misdetections will 
increase, resulting in reduced performance. Based on the above, 
we incorporated our on-site findings into the following three 
constraints on image generation by our proposed technique to 
ensure that the generated synthetic image would be an accurate 
reflection of the distribution of the data actually observed 
on-site:

Constraint 1: Limit the vehicle size and the paste area.
Constraint 2: The average number of foregrounds per image 

must be the same between the synthetic image 
and the on-site data.

Constraint 3: Overlapping vehicles must occur at a certain 
probability.

Table 1 summarizes the results of the comprehensive 
verification of the effectiveness of each constraint. Note that 
Experiments 1-4, 2-3, and 3-1 were performed under the same 
conditions.

Each ✓ indicates the application of a relevant constraint, 
while each × means the non-application of a relevant 
constraint.

Table 1  Constraints on pasting and the precision of the synthetic image learning 
model

Expt.  
No.

Resizing  
constraint

Paste-area  
constraint

Average number  
of vehicles pasted  

(range)

Ave. No. of  
overlapping  

vehicles

AP  
(Mask)

%

1-1 × × 10 (1-19) 0 65.82

1-2 × ✓ 10 (1-19) 0 66.37

1-3 ✓ × 10 (1-19) 0 67.86

1-4 ✓ ✓ 10 (1-19) 0 69.60

2-1 ✓ ✓ 1 (1-1) 0 58.90

2-2 ✓ ✓ 5 (1-9) 0 65.87

2-3 ✓ ✓ 10 (1-19) 0 69.60

2-4 ✓ ✓ 20 (11-29) 0 68.58

3-1 ✓ ✓ 10 (1-19) 0% 69.60

3-2 ✓ ✓ 10 (1-19) 20% 85.40

3-3 ✓ ✓ 10 (1-19) 40% 87.52

3-4 ✓ ✓ 10 (1-19) 60% 89.24

Each of the following sections presents a hypothesis on each 
of the three constraints and their verification results.
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4.3 Paste-area/resizing constraints [Experiment 1]
This section considers the paste-area and resizing constraints for 
pasting foregrounds onto backgrounds. When foregrounds are 
pasted onto the same location as when extracted, the resulting 
synthetic image will contain less variation. Hence, foregrounds 
are also pasted onto different locations than when extracted to 
generate synthetic images of various patterns. Note here that 
scene-specific constraints exist on the points of vehicle 
emergence because no vehicle emerges at the place of a wall or 
a median strip in a real video shooting site. Because of the 
principle of SSD, an SSD model tends to learn likely points of 
foreground occurrence. Therefore, paste-area constraints, such 
as limiting pasting only to a road surface, are expected to work 
effectively.

Note also that a camera image shows nearside vehicles larger 
and far-side vehicles smaller according to the law of 
perspective. Therefore, the size ratio must be calculated when 
pasting a foreground at different coordinates than when 
extracted. A foreground to be pasted on a near side should be 
scaled up, while one to be pasted on a far side should be scaled 
down. Then, the resulting synthetic image can be expected to 
become closer to the actual observed image. Note, however, that 
excessive scaling up/down will result in a distorted foreground 
image. Hence, the foreground must be pasted at a point where it 
can remain within the range between an upper and a lower limit 
set for the enlargement and reduction ratios.

To verify the effectiveness of these constraints, we 
comparatively examined four patterns for with and without the 
resizing and paste-area constraints. With no coordinate 
constraint applied, foregrounds were pasted randomly. 
Meanwhile, with a coordinate constraint applied, foregrounds 
were pasted only at coordinates within a pre-specified road area. 
With the resizing constraint not applied, foregrounds pasted at 
points different than when extracted were not resized. With the 
resizing constraint applied, foregrounds were resized and pasted 
only within a range where they would fall within the scaling 
ratio range of 75% to 133%.

The experimental results show that the pre-trained detection 
accuracy was highest when both constraints were employed. As 
shown by the results of Experiment 1-1 (Fig. 3(a)), without the 
resizing constraint, detection frames may appear all over the 
screen. This problem occurs when the model learns the 
occurrence of an oversized vehicle that results from a 
foreground pasted without consideration of the change in size. 
In contrast, Experiment 1-4 (Fig. 3(b)) shows the modelʼs 
tendency to misdetect white lines.

(a) Experiment 1-1 (b) Experiment 1-4

Fig. 3  Results of Experiment 1

4.4 The number of vehicles to be pasted [Experiment 2]
Some images may contain only one vehicle, while some other 
images may show multiple vehicles captured simultaneously. 
With a disproportionately large number of synthetic images that 
contain an extremely large or small number of foregrounds, 
inconsistencies with on-site data may result. Therefore, by 
limiting the average number of foregrounds to be pasted on an 
image to that of foregrounds in an on-site image, synthetic 
images can be expected to resemble actual observed images. To 
ascertain the effectiveness of adjusting the number of 
foregrounds, we compared a total of the following four patterns 
regarding pre-trained performance: 10 vehicles per image, 
which is the average number of vehicles in the experimental 
data, one vehicle per image as an example of an undersized 
number of vehicles, five vehicles per image, and 20 vehicles per 
image as an example of an oversized number of vehicles. Note 
that the resizing and paste-area constraints, both confirmed by 
Experiment 1 to be effective, were adopted for all four patterns.

The experimental results revealed that the model showed 
extremely low after additional learning performance for the case 
with one vehicle while showing the highest performance for the 
case with ten vehicles. The model tends to detect mutually 
proximate multiple vehicles collectively as one vehicle when the 
number of vehicles to be pasted on single images is one.

On the other hand, when that number is 20, the model tends 
to exhibit a propensity for over-detection, which may take the 
form of misdetection of the background or multiple detection 
frames applied around one vehicle.

(a) Experiment 2-1 (b) Experiment 2-4

Fig. 4  Results of Experiment 2
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4.5 Generation of overlapping vehicles [Experiment 3]
One of the problems in object detection is the non-detection of 
objects with a visually inaccessible hidden portion. Assume, for 
example, that two objects overlap one another., the inner object, 
only partially observable, may be undetectable or collectively 
detected as a single object. Hence, one solution to this problem 
posed by hidden portions is to generate overlapping vehicles on 
purpose before synthesis to allow the subsequent learning by the 
model. This solution can be expected to improve the robustness 
of the model to partially hidden vehicles. The generation 
principle for overlapping vehicles is to specify coordinates 
while scaling up/down according to the principles presented in 
Section 4.3 and then perform the paste-vehicles operation for 
pasting a fixed number of vehicles to coordinates overlapping 
with other vehicles. It must be ensured that the vehicle closest 
to the camera will partially hide the vehicles not as close to it 
(Fig. 5).

Fig. 5  Vehicles overlapped by scaling up/down and repositioning

To ascertain the effectiveness of generating overlapping 
vehicles, we set four different proportions of overlapping pasted 
vehicles as 0%, 20%, 40%, and 60% to compare the four cases 
regarding the modelʼs pre-trained performance. Note that the 
number of vehicles to paste on an image was set here to 10, 
which was the average number that had led to the modelʼs 
highest performance as shown by the results in Section 4.4.

The experimental results showed that the model achieved the 
highest pre-trained modelʼs performance for the case in which 
the overlapping pasted vehicles accounted for 60 percent of the 
total, followed by the case where the proportion to the total 
number of pasted vehicles was set to 40%. A look at the 
detection results showed that with an excessively small number 
of overlapping vehicles, the model tended to show reduced 
detection accuracy for overlapping vehicles while successfully 
detecting non-overlapping vehicles. By contrast, with an 
excessively large number of overlapping vehicles, the model 
applied multiple detection frames to non-overlapping vehicles 
and tended to show reduced detection accuracy for non-
overlapping vehicles despite the successful detection of 
overlapping vehicles.

(a) Experiment 3-1 (b) Experiment 3-4

Fig. 6  Results of Experiment 3

Although performing best for the 60% case, the model took a 
considerable time to search pairs of overlapping pasted 
foregrounds and needed a longer search time with an increasing 
number of overlapping foregrounds. The average time that the 
model needed to generate an image with no overlaps was 2.4 
seconds, significantly differing from the 6.4 seconds for the 
40% case and the 14.7 seconds for the 60% case. The model did 
not perform very differently for the 40% and 60% cases but 
showed a difference of as large as 2.3 times in generation time 
between the two cases.

5. Performance evaluation
5.1 Setting the performance evaluation conditions
This section compares the following four methods to ascertain 
the effectiveness of synthetic image-based learning: (1)
additional learning with manually labeled ground-truth, (2)
additional learning based on images/ground-truth labels 
synthetically generated after a human check of the source 
foreground (our proposed technique: with source foreground 
check), (3) additional learning based on images/ground-truth 
labels synthetically generated without a human check of the 
source foreground (our proposed technique: without source 
foreground check), and (4)without additional learning.

In this experiment, we used video still images of two scenes 
(Scene 1 = expressway and Scene 2 = crossroads). Scene-1 
expressway is the same location as in Chapter 4. Fig. 7 shows 
Scene-2 crossroads.

Fig. 7  Video still image of the experimental site (crossroads)

5



The object detection model and the training procedure used 
were the same as in Chapter 4. When pasting foreground based 
on our proposed technique, we apply the principle found most 
effective from the experimental results in Chapter 4.: the 
coordinate constraint was imposed as the principle to perform 
resizing in pasting to generate overlapping vehicles with the 
average number of simultaneously occurring foregrounds in 
agreement with that of the on-site data. Note, however, that the 
proportion of overlapping vehicles to the total number of 
vehicles to be generated was set to 40 percent from out of 
consideration of the generation time.

Note also that Mask-RCNN may extract white lines or 
arrows as the source foregrounds by mistake when extracting 
vehicles. For example, a vehicleʼs edge or a patch of pavement 
extracted by Mask-RCNN and learned by a model as a vehicle, 
as in Fig. 8, would reduce the modelʼs performance. To 
investigate the impact of wrongly learned foregrounds which are 
extracted by Mask-RCNN, we compare two methods: one with 
defective source foreground s removed by human checking(with 
source foreground check) and the other without (without source 
foreground check).

Fig. 8  Examples of unintentionally detected non-vehicle objects

5.2 Results and discussion
The experimental results for the two scenes are shown in Tables 
2 and 3, respectively. In either case, the model performed 
significantly better with synthetic image-based learning than 
without additional learning, substantiating the effectiveness of 
synthetic image-based learning. More specifically, the model 
achieved improvement of 27 points, while manual label 
achieved 35 points. In other words, in the case of expressway 
image synthesis with the source foreground check, the model 
achieved performance improvement equivalent to 77 percent of 
that previously achieved manually at an operation cost 
equivalent to 5.5 percent of the conventional level.

Table 2  Experimental results(expressway)

Technique AP (Mask) % Required person-hours (hours)

Manual label 97.52 144

Image synthesis 
(with source foreground check) 89.72 8

Image synthesis 
(w/o source foreground check) 89.56 4

Without additional learning 62.46 0

Table 3  Experimental results(crossroads)

Technique AP (Mask) % Required person-hours (hours)

Manual label 96.49 144

Image synthesis 
(with source foreground check) 85.50 8

Image synthesis 
(w/o source foreground check) 84.95 4

Without additional learning 80.90 0

On the other hand, for the crossroads, the model only 
managed to achieve improvement of 5 points, while manual 
label achieved 16 points.

Detection results shows that after synthetic image learning, 
the model detected patterns conventionally undetectable without 
additional learning. Let us take the cases in Fig. 9, for instance. 
Without additional learning, the model failed to detect the 
vehicle which is partially hidden behind the median strip. 
Meanwhile, with additional learning through synthetic images, 
the model successfully detected the same vehicle (yellow 
arrow). Although the arrow-marked portion of the pavement 
was misdetected as a vehicle without source foreground check, 
it was not misdetected after being removed after the source 
foreground check (blue arrow).

(a) Manual label (b) Without additional learning

(c) synthetic images (w/o source 
foreground check)

(d) synthetic images (with source 
foreground check)

Fig. 9  Comparison of the detection results

When with additional learning through synthetic images, the 
model failed to reach the performance level achievable with the 
learning of manually labeled input data but fared better in terms 
of cost. For example, it took a cumulative total of 144 person-
hours to add ground-truth labels manually to 1,800 images used 
in our experiments. By contrast, in the case of image synthesis, 
which only required parameter adjustment while checking each 
generated image, images and ground-truth labels were 
successfully generated in about four person-hours without 
source foreground checks and about eight person-hours with 
source foreground checks.
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Besides, our proposed technique led to a significant reduction 
in computing time compared to those proposed in preceding 
studies discussing synthetic images. Whereas T. Hodan et al.ʼs 
technique needed 120 seconds per image to generate a 640×
480-pixel image, our proposed technique successfully generated 
a 1,600×900-pixel image at the rate of 6.4 seconds per image.

One of the remaining challenges is to study the pasting 
method for obtaining synthetic images closer to actual video 
still images while maintaining the current low operation cost. 
Even with partial foregrounds or non-vehicle objects removed, 
our current pasting method fell short of the accuracy achievable 
with manually labeled input data. This problem occurred 
probably because of the difference between the image 
distribution achieved with automatic pasting and the actual 
image distribution. We consider it necessary to smooth shadows 
resulting from pasting or review the method of generating 
overlapping vehicles.

6. Conclusions
In this study, we studied, developed, and verified the 
effectiveness of a technique that could generate images and 
ground-truth labels at high speed using an automated tool and 
perform additional learning for vehicle detection tasks.

More specifically, we separated the vehicles and background 
in each video still image shot on-site and pasted the vehicles 
onto the background in various ways to allow automatic 
generation of images and ground-truth labels. Through the 
elaboration of the pasting method, we narrowed the distribution 
gap between automatically synthesized images and real images 
as much as possible to reduce non-detections and misdetections. 
As a result, the pasting method improved accuracy, with only 
5.5% of the person-hours required with manually labeled 
ground-truth, thereby allowing the model to adapt to scenes.

The future challenges include how to reduce the performance 
gap relative to manually labeled ground-truthwhile maintaining 
the current low operation cost. This gap occurs probably because 
objects still look different between when they are captured in 
actual images and when they are pasted onto synthetic images. 
From now on, we intend to explore and continuously improve a 
natural pasting method for this challenge and deploy resulting 
technical achievements not only to fixed camera vehicle detection 
but also to various fields such as human and animal detection or 
mobile cameras.
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