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With the spread of IoT, embedded devices are also connected to the Internet, which is in danger of security 
attacks. If a security attack stopped the control of embedded devices, substantial damage is expected. Therefore, a 
measure is demanded that does not lose control even if the device is attacked. If the device can immediately 
classify the type of attack when it experiences a security attack, it can automatically respond to the attack. As a 
result, it is possible not to lose control and to minimize any damage. That is why we developed and implemented 
a lightweight attack detection and classification algorithm and confirmed that it was possible to be run in real time 
on embedded devices.

1. Introduction
Following the penetration of IoT into diverse fields, not only 
personal computers or servers but also various embedded 
devices have come to be connected to the Internet. As a result, 
embedded devices are now exposed to security attack risks in 
much the same way as personal computers or servers have been.

The above is particularly true with embedded devices, such 
as automotive vehicle control units and controllers for factory 
machines. These embedded devices that perform physical 
actions; therefore, security attacks on them may lead to serious 
personal and material damage. For instance, successful car 
hacking incidents have been reported in which vehicle 
operations, including the steering wheel and engine braking, 
were remotely controlled via a cell-phone line1).

Moreover, many examples of malware, such as viruses, 
targeting control equipment in facilities, such as factories and 
power plants, have been reported that caused massive losses, 
such as broken machinery and power outages2).

The standard reference consulted when planning 
countermeasures against security attacks is the National Institute of 
Standards and Technologyʼs (NIST) Cybersecurity Framework3), 
which consists mainly of five phases of identification, protection, 
detection, response, and recovery for security measures to 
be worked on. Fig. 1 shows the outline of the Cybersecurity 
Framework.

Fig. 1 Outline of the NIST Cybersecurity Framework

The basic principle of a security measure is to analyze 
security risks to a target system in the identification phase and 
protect the target system from security attacks in the protection 
phase. Security attacks are, however, in constant evolution. 
Attacks able to break through the protection will emerge sooner 
or later.

What then becomes necessary are the detection of security 
attacks, including ones that broke through the protection and an 
appropriate response to the detected attack for damage 
minimization. This paper presents a report on the development 
and implementation of a detection algorithm designed to run in 
real time on embedded devices, even on low-resource embedded 
devices, and minimizes damage through responses.
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2. Challenge
A proper response to a detected attack requires determination of 
the nature of the attack. This requirement aims to select 
appropriate countermeasures for the types of attacks 
encountered. Attack detection and classification are supposed to 
occur simultaneously. Hence, these are lumped together and 
called “detection and classification” throughout the rest of this 
paper.

In the case of control equipment for machines that perform 
physical actions, any problem that may occur to it must be 
addressed without delay to prevent damage to nearby personnel 
and the machinery itself. The same holds for responses to 
security attacks. Hence, the detection and classification function 
needs to be executable in real time.

Accordingly, the challenge herein is to develop a method of 
executing the attack detection-and-classification function on an 
embedded device in real-time.

3. Conventional attack detection technology
Security measures at the embedded device level are just 
beginning to emerge. Particular note should be taken that no 
products exist that can execute the attack detection-and-
classification function in real time. Meanwhile, some IT security 
software products for personal computers, servers, and other 
computing equipment can execute the attack detection-and-
classification function in real time.

In IT attack detection and classification technologies, very 
minute details are identified, including, for example. variants 
and version names of detected viruses. Some technologies use 
both machine learning and AI for detecting unknown attack 
methods, and hence need massive amounts of data along with 
massive amounts of computation for data retrieval.

Accordingly, IT attack detection and classification 
technologies require extremely fast CPUs and large memory/
storage capacities and hence cannot be ported directly into 
embedded devices. AppGuard4), available from Blue Planet 
Works, may serve here as an illustrative example of such 
technologies. AppGuard is software that runs on the Windows 
series of operating systems. One of its selling points is that it 
runs very light. Nevertheless, its program body (protection 
engine) has a size of 1 MB and requires free disk space of 500 
MB and a CPU clock speed of 1.8 GHz or more. Though 
considerably light for an application for Windows, AppGuard is 
well beyond the specs of embedded devices. For example, the 
specs of the in-vehicle microcomputer used for the development 
presented herein are a 1 MB flash ROM capacity (instead of PC 
free disk space), a memory capacity of 128 KB, and a CPU 
clock speed of approximately 100 MHz. This platform is far 

from an environment that allows direct import of the technology 
of AppGuard.

4. Development of the attack detection-and-
classification algorithm

This chapter explains the attack detection and classification 
technology we developed and previously reported5). This 
technology is intended for embedded devices used as control 
units and is designed to perform attack detection and 
classification on embedded devices in real time.

A security attack on an embedded device comes from an 
external source. In other words, external inputs include 
anomalous ones. If anomalous inputs are defined as 
“anomalies,” and if more than one anomaly is detected, a device 
is found to be under attack. Our basic idea of attack detection is 
based on this sequence of events. The combination of anomalies 
that constitute an attack depends on the type of attack. 
Therefore, the detection of a specific combination of anomalies 
means that of a specific attack. Such detection of specific 
attacks for each type of attack of interest leads to the 
simultaneous execution of attack detection and classification. 
Fig. 2 shows the conceptual diagram of the attack detection-
and-classification algorithm.

Fig. 2	 Conceptual	diagram	of	the	attack	detection-and-classification	algorithm

This algorithm only judges simple combinations of 
occurrences and non-occurrences of anomalies and seems to 
meet the two requirements of high-speed processing capability 
and low required data capacity, which are imposed by the 
hardware limitations of embedded devices. Table 1 shows the 
six types of attacks to be classified. These types are in line with 
STRIDE6), one of the standard threat analysis models, and 
correspond to the six threats, the initials of which are S, T, R, I, 
D, and E, respectively.
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Table 1	 Types	of	attacks	to	be	classified

Type of attack Example

Spoofing Sending in fake control commands disguised as an 
authentic device

Tampering Tampering	firmware	and	configuration	data

Repudiation Erasing or overwriting logs to erase the traces of 
intrusion

Information disclosure Acquiring	 confidential	 information,	 such	 as	 special	
communication	commands	or	configuration	data

Denial of service Sending a huge amount of communication messages 
to a system to force the system out of service

Elevation of privilege Illicitly obtaining a privileged access right

Moreover, when coming under a complex attack consisting 
of multiple attacks, the embedded device must be able to 
determine the priority order for dealing with the attacks. 
Therefore, we modeled the progress of an attack as an 
irreversible state transition process and proposed an approach 
that deals with attacks in the descending order of their 
progress.7) Fig. 3 shows a state-transition diagram that models 
the progress of an attack (called an attack state-transition 
diagram).

Fig. 3 Typical attack state-transition diagram

5. Finer classification of attacks
5.1	 Challenge	to	the	classification	granularity	for	attacks
The technology presented in Chapter 4 classifies attacks into six 
types. The six-type classification is, however, still insufficient to 
achieve the purpose of making appropriate actions for the types 
of attacks encountered. The action to be taken for, for example. 
a DoS attack may differ depending on whether the service is 
unavailable simply because of an overloaded communication 
bus or the device is down because of the CPUʼs failure to meet 
the required processing time while processing a huge amount of 

messages. Hence, attacks should be more finely distinguished to 
be reliably detected and classified.

5.2	 Finer	 classification	 through	 the	 integration	 of	 internal	
state anomalies

The attack detection-and-classification algorithm explained in 
Chapter 4 assumes that the anomalies to be detected are 
external inputs. Meanwhile, however, as shown by the example 
given in Section 5.1, an algorithm needs to make judgments on 
external inputs as well as the internal state of the embedded 
device to ensure a proper response. If a device is in an 
anomalous internal state or behaving anomalously, such a state 
or behavior should also be defined as an “anomaly.” Moreover, 
attacks detected at the occurrence of anomalies due to the 
internal state of the device should be finely classified as new 
types of attacks. We added this finer classification to the attack 
state-transition diagram in Fig. 3 to implement an attack 
detection function for making integrated judgments based on 
both external input anomalies and internal state anomalies. Fig. 
4 shows a typical attack state-transition diagram with a finer 
classification of attacks.

Fig. 4	 Typical	attack	state-transition	diagram	with	a	finer	classification	of	attacks	
through the integration of internal state anomalies

6. Implementation of the algorithm
6.1	Model	intended	for	in-vehicle	ECUs
We developed a model that assumes that the device in which the 
algorithm is to be implemented is an electronic control unit for 
in-vehicle installation (hereafter “in-vehicle ECU”). Being a 
lower resource among embedded devices and, as explained in 
Chapter 1, exposed to security attack risks, in-vehicle ECUs are 
suitable for the technology presented herein to be applied to. 
Table 2 shows the hardware specifications. This hardware 
includes an in-vehicle one-chip microcontroller as its CPU and 
has a multiple number of channels compliant with CAN, one of 
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the standard in-vehicle network protocols. Additionally, the 
hardware performs transmission and reception of specified 
messages as its intended function for ECUs.

Table 2	Hardware	specifications	for	the	model	intended	for	in-vehicle	ECUs

Item Specification

CPU	clock	speed 96 MHz

Flash ROM 1 MB

RAM 128 KB

Communication protocol CAN

Transfer rate 500 kbps

Control period 1 ms

6.2	 Algorithm	implementation	method
The attack classification algorithm developed this time makes 
separate judgments on attacks based on their types and hence 
can perform high-speed processing by bit operations. As 
explained in Chapter 4, in connection with attack classification, 
attacks are modeled as irreversible state transitions. Hence, the 
algorithm judges that a certain attack A has occurred when the 
following conditions are both met: all transition conditions 
leading up to A are met (IN Conditions), and none of the 
conditions for the transition from A to the next are met (OUT 
Conditions). Fig. 5 shows the conceptual diagram for this 
judgment.

All the IN Conditions hold as ANDed conditions and hence 
can be expressed as a bit string. The data set with a value of 1 
for the bit corresponding to the anomaly constituting an IN 
Condition and a value of 0 for the other bits in a bit string is 
called an IN Condition bitmask. An OUT Condition can 
similarly be expressed using a bitmask.

If for a detected anomaly, a bit string is available with the 
value of the bit for the detected anomaly being 1 and that of 
other bits being 0, the algorithm can tell whether an IN or an 
OUT Condition has occurred by performing a single AND 
operation with each of their respective bitmasks. In other words, 
two bit operations suffice to determine that a single attack has 
been detected.

Fig. 5 Judgment criteria based on the attack state-transition diagram

Then, for the algorithm thus implemented, the CPU 
computational load and the data capacity need to be estimated.

Fig. 6 shows the bitmasks necessary for the IN and OUT 
Conditions of each attack, assuming that n types of attacks are to 
be detected and, for their detection, m types of anomalies are to 
be detected.

Fig. 6 Bitmasks required for attack detections

Let us here estimate the CPU computational load. Assuming 
that the CPU is a 32-bit CPU commonly used for in-vehicle 
ECUs, 32 bitsʼ worth of data can be processed per operation; 
hence, the number of times of operation is 2×[m/32]×n times.

Similarly, let us estimate the required data capacity. Data are 
stored in bytes (1 byte = 8 bits); hence, the required data 
capacity is 2×[m/8]×n bytes.

6.3	 Specifications	 for	 the	 attack	detection-and-classification	
function

For the model intended for in-vehicle ECUs, we designed and 
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developed a security measure. Using this security measure, we 
identified the attacks to be classified and the anomalies to be 
detected for attack detection. As a result, the number of types of 
attacks to be classified increased to 11. Table 3 and Fig. 7 show 
the specifications for the designed attack detection-and-
classification function.

Table 3	Specifications	for	the	attack	detection-and-classification	function

Item Specification

Types	of	detectable	and	classifiable	attacks 11

Types	of	anomalies	used	for	attack	detection	and	classification 45

Fig. 7 Designed attack state-transition diagram

Let us apply these functional specifications, together with the 
hardware specifications in Section 6.1, to the estimation results 
in Section 6.2 to estimate the actual processing time and data 
capacity. The parameters n and m in Section 6.2, in other words, 
the number of types of attacks and the number of types of 
anomalies, are n = 11 and m = 45, respectively.

The estimated CPU computational load is 44 bit operations. 
Assuming that a bit operation completes in one CPU clock 
period, the processing time required for the operations is 
approximately 44/(96×106) ≈ 0.5 μs, which is approximately 
1/2,000 of a control period of 1 ms. Meanwhile, the estimated 
data capacity is 132 bytes, which is approximately 1/8,000 of a 
flash ROM capacity of 1 MB.

From the above, our algorithm is expected to be 
implementable in embedded devices, such as in-vehicle ECUs, 
with no problem with the computational load and the data 
capacity.

7. Evaluation of the implemented model
7.1	 Requirements
The requirements for the attack detection-and-classification 

function are defined as follows:
• Proper function

Ability to perform correct detection and classification for all 
the defined attack types

• Performance sufficient to run in real time without disrupting 
the inherent function of the embedded device
Sufficiently low memory usage (less than 10% of the 
respective capacities of the flash ROM and the RAM)
Even under the heaviest load, the total time of all functions 
does not exceed the control period (1 ms).

7.2	 Functional	evaluation
Table 4 shows the attack method we set for each of the defined 
attack types.

Table 4	Test	cases	for	the	attack	detection-and-classification	function

No. Type of attack Description of attack

1 Scanning
Injecting brute force attack messages from the 
attack device into the communication path to 
identify a CAN ID

2 Message tampering
Rewriting and forwarding data through an 
intermediate device inserted in the communication 
path

3 Unauthorized	
message insertion

Injecting illegal messages with the same IDs as 
those of legal messages from the attack device into 
the communication path

4 Illegal 
authentication

Using	an	illegal	encryption	key	to	start	an	
authentication sequence from the attack device

5 Message blocking
Selectively blocking messages with certain IDs 
using an intermediate device inserted in the 
communication path

6 Hardware attack
Causing an hardware error by sending illegal 
signals from the attack device only during the 
transmission of a message with a certain ID

7 Communication 
denial of service

Injecting a huge amount of messages not meant to 
be received from the attack device into the 
communication path to saturate the 
communication

8 Control denial of 
service

Injecting a huge amount of messages meant to be 
received from the attack device into the 
communication path to saturate the control 
process

9 Security log 
tampering

Tampering the security log on the nonvolatile 
memory and start the model

10 Firmware 
tampering

Tampering	the	firmware	on	the	nonvolatile	memory	
and start the model

11 Configuration	data	
tampering

Tampering	the	configuration	data	on	the	
nonvolatile memory and start the model

Fig. 8 shows the schematic of the system configuration as 
tested.
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Fig. 8	 System	configuration	schematic

The points of attack corresponding to the test case numbers 
in Table 4 are indicated by the numbers in the balloons in the 
figure. Table 5 shows the results of running the test cases in 
Table 4 with the system configuration in Fig. 8.

Table 5	Test	results	for	the	attack	detection-and-classification	function

No. Elapsed time  
(ms)

Result of attack detection and 
classification Judgment

1    1 Scanning OK

2    1 Message tampering OK

3    1 Unauthorized	message	insertion OK

4    1 Illegal authentication OK

5  200 Message blocking OK

6
 200 Message blocking OK

 226 Hardware attack

7

   1 Scanning OK

  38 Message blocking

1419 Communication denial of service

8

   1 Unauthorized	message	insertion OK

  27 Message blocking

 376 Control denial of service

9 — Security log tampering OK

10 — Firmware tampering OK

11 — Configuration	data	tampering OK

For each of Test Cases Nos. 1 to 11, the type of attack 
detected and classified and the elapsed time from the start of 
attack until its detection and classification are shown in the 
above table. Although some types of attacks were first detected 
as another type of attack, they were eventually detected and 
classified as the expected attack, hence resulting in no problem. 
The elapsed times for Cases Nos. 9 to 11 are shown as N/A 
because the attacks in these cases were detected during the 
initialization process at the start of the model intended for 
ECUs. The above results confirm that the implemented attack 
detection-and-classification function correctly worked as 
supposed to.

7.3	 Performance	evaluation
This section first shows the confirmed results on the memory 
usage. The flash ROM capacity used by the attack detection-

and-classification function is the total of the data capacity 
required for the bitmasks shown in Section 6.2 and that required 
for the algorithm code. The RAM capacity to be used is the 
amount of space required to save the execution state and is 
statically reserved. Table 6 shows the results of memory usage 
measurement.

Table 6 Results of memory usage measurement by the attack detection-and-
classification	function

Item
Memory usage

Requirement Performance

Flash ROM Below 100 KB 6.2 KB

RAM Below 12.8 KB 8.4 KB

Both the flash ROM usage and the RAM usage are below 10 
percent of the respective total capacities of the flash ROM and 
the RAM shown in Table 2. Thus, the requirements are met. The 
confirmed results on the processing time are as follows:

We measured the processing time by observing the digital 
signal waveforms using the software we modified so that a 
digital signal output would occur at each switchover of the 
internal processing. The modification affected the processing 
time only to a negligible degree. Fig. 9 shows the results of the 
processing time measurement. Even when the maximum 
processing time was reached and hence the communication load 
was 100 percent, the requirement of 1 ms or less was met with 
a safe margin. These results confirm that the implemented attack 
detection-and-classification function has performance sufficient 
to run in real time without disrupting the inherent function of 
the embedded device.

Fig. 9	 Processing	time	in	the	model	intended	for	in-vehicle	ECUs

From the above, we believe that the algorithm implemented 
this time is a practically feasible technical solution to detect and 
classify attacks without compromising the inherent function of 
even a low-resource embedded device.
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8. Conclusions
As a solution to the challenge of performing attack detection 
and classification on embedded devices in real time, we 
developed a high-speed, lightweight attack detection-and-
classification algorithm able to run on embedded devices. 
Additionally, we improved the attack detection-and-
classification algorithm for a finer classification of attacks and 
the proper selection of appropriate actions.

Moreover, we implemented the developed algorithm in actual 
embedded-device hardware to run functional and performance 
tests. The test results have shown that the algorithm has 
performance sufficient to run in real time while achieving a 
finer classification of attacks.

With this technology implemented in an embedded device, all 
the necessary steps up to emergency response actions would be 
taken immediately after the encounter with a security attack. 
Moreover, this technology allows the fine classification of 
attacks down to an appropriate degree of granularity and hence 
enables automatic selection and execution of an emergency 
response action matching the type of attack encountered.

When, in the future, we can set appropriate emergency 
response actions for the types of attacks, we will be able to 
minimize damage from security attacks on embedded devices.

The development presented here was intended for 
implementation in in-vehicle ECUs and hence was customized 
to the needs of in-vehicle ECUs with the focus mainly on the 
anomaly detection method and scheduling. From now on, we 
intend to deploy this technology to embedded devices in areas/
fields other than in-vehicle ECUs.
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