
KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

Contact : KOGAWARA Toru toru.kogawara@omron.com

Implementation of Real-time Security
Attack Detection and Classification
Algorithms for Embedded Devices
KOGAWARA Toru, YAMAMOTO Taisei, ZENG Zhen and HIROBE Naoki

With the spread of IoT, embedded devices are also connected to the Internet, which is in danger of security
attacks. If a security attack stopped the control of embedded devices, substantial damage is expected. Therefore, a
measure is demanded that does not lose control even if the device is attacked. If the device can immediately
classify the type of attack when it experiences a security attack, it can automatically respond to the attack. As a
result, it is possible not to lose control and to minimize any damage. That is why we developed and implemented
a lightweight attack detection and classification algorithm and confirmed that it was possible to be run in real time
on embedded devices.

1. Introduction
Following the penetration of IoT into diverse fields, not only
personal computers or servers but also various embedded
devices have come to be connected to the Internet. As a result,
embedded devices are now exposed to security attack risks in
much the same way as personal computers or servers have been.

The above is particularly true with embedded devices, such
as automotive vehicle control units and controllers for factory
machines. These embedded devices that perform physical
actions; therefore, security attacks on them may lead to serious
personal and material damage. For instance, successful car
hacking incidents have been reported in which vehicle
operations, including the steering wheel and engine braking,
were remotely controlled via a cell-phone line1).

Moreover, many examples of malware, such as viruses,
targeting control equipment in facilities, such as factories and
power plants, have been reported that caused massive losses,
such as broken machinery and power outages2).

The standard reference consulted when planning
countermeasures against security attacks is the National Institute of
Standards and Technologyʼs (NIST) Cybersecurity Framework3),
which consists mainly of five phases of identification, protection,
detection, response, and recovery for security measures to
be worked on. Fig. 1 shows the outline of the Cybersecurity
Framework.

Fig. 1 Outline of the NIST Cybersecurity Framework

The basic principle of a security measure is to analyze
security risks to a target system in the identification phase and
protect the target system from security attacks in the protection
phase. Security attacks are, however, in constant evolution.
Attacks able to break through the protection will emerge sooner
or later.

What then becomes necessary are the detection of security
attacks, including ones that broke through the protection and an
appropriate response to the detected attack for damage
minimization. This paper presents a report on the development
and implementation of a detection algorithm designed to run in
real time on embedded devices, even on low-resource embedded
devices, and minimizes damage through responses.

1

OMRON TECHNICS Vol.52.013EN 2020.8

2. Challenge
A proper response to a detected attack requires determination of
the nature of the attack. This requirement aims to select
appropriate countermeasures for the types of attacks
encountered. Attack detection and classification are supposed to
occur simultaneously. Hence, these are lumped together and
called “detection and classification” throughout the rest of this
paper.

In the case of control equipment for machines that perform
physical actions, any problem that may occur to it must be
addressed without delay to prevent damage to nearby personnel
and the machinery itself. The same holds for responses to
security attacks. Hence, the detection and classification function
needs to be executable in real time.

Accordingly, the challenge herein is to develop a method of
executing the attack detection-and-classification function on an
embedded device in real-time.

3. Conventional attack detection technology
Security measures at the embedded device level are just
beginning to emerge. Particular note should be taken that no
products exist that can execute the attack detection-and-
classification function in real time. Meanwhile, some IT security
software products for personal computers, servers, and other
computing equipment can execute the attack detection-and-
classification function in real time.

In IT attack detection and classification technologies, very
minute details are identified, including, for example. variants
and version names of detected viruses. Some technologies use
both machine learning and AI for detecting unknown attack
methods, and hence need massive amounts of data along with
massive amounts of computation for data retrieval.

Accordingly, IT attack detection and classification
technologies require extremely fast CPUs and large memory/
storage capacities and hence cannot be ported directly into
embedded devices. AppGuard4), available from Blue Planet
Works, may serve here as an illustrative example of such
technologies. AppGuard is software that runs on the Windows
series of operating systems. One of its selling points is that it
runs very light. Nevertheless, its program body (protection
engine) has a size of 1 MB and requires free disk space of 500
MB and a CPU clock speed of 1.8 GHz or more. Though
considerably light for an application for Windows, AppGuard is
well beyond the specs of embedded devices. For example, the
specs of the in-vehicle microcomputer used for the development
presented herein are a 1 MB flash ROM capacity (instead of PC
free disk space), a memory capacity of 128 KB, and a CPU
clock speed of approximately 100 MHz. This platform is far

from an environment that allows direct import of the technology
of AppGuard.

4. Development of the attack detection-and-
classification algorithm

This chapter explains the attack detection and classification
technology we developed and previously reported5). This
technology is intended for embedded devices used as control
units and is designed to perform attack detection and
classification on embedded devices in real time.

A security attack on an embedded device comes from an
external source. In other words, external inputs include
anomalous ones. If anomalous inputs are defined as
“anomalies,” and if more than one anomaly is detected, a device
is found to be under attack. Our basic idea of attack detection is
based on this sequence of events. The combination of anomalies
that constitute an attack depends on the type of attack.
Therefore, the detection of a specific combination of anomalies
means that of a specific attack. Such detection of specific
attacks for each type of attack of interest leads to the
simultaneous execution of attack detection and classification.
Fig. 2 shows the conceptual diagram of the attack detection-
and-classification algorithm.

Fig. 2	 Conceptual	diagram	of	the	attack	detection-and-classification	algorithm

This algorithm only judges simple combinations of
occurrences and non-occurrences of anomalies and seems to
meet the two requirements of high-speed processing capability
and low required data capacity, which are imposed by the
hardware limitations of embedded devices. Table 1 shows the
six types of attacks to be classified. These types are in line with
STRIDE6), one of the standard threat analysis models, and
correspond to the six threats, the initials of which are S, T, R, I,
D, and E, respectively.

KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

2

KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

Table 1	 Types	of	attacks	to	be	classified

Type of attack Example

Spoofing Sending in fake control commands disguised as an
authentic device

Tampering Tampering	firmware	and	configuration	data

Repudiation Erasing or overwriting logs to erase the traces of
intrusion

Information disclosure Acquiring	 confidential	 information,	 such	 as	 special	
communication	commands	or	configuration	data

Denial of service Sending a huge amount of communication messages
to a system to force the system out of service

Elevation of privilege Illicitly obtaining a privileged access right

Moreover, when coming under a complex attack consisting
of multiple attacks, the embedded device must be able to
determine the priority order for dealing with the attacks.
Therefore, we modeled the progress of an attack as an
irreversible state transition process and proposed an approach
that deals with attacks in the descending order of their
progress.7) Fig. 3 shows a state-transition diagram that models
the progress of an attack (called an attack state-transition
diagram).

Fig. 3 Typical attack state-transition diagram

5. Finer classification of attacks
5.1	 Challenge	to	the	classification	granularity	for	attacks
The technology presented in Chapter 4 classifies attacks into six
types. The six-type classification is, however, still insufficient to
achieve the purpose of making appropriate actions for the types
of attacks encountered. The action to be taken for, for example.
a DoS attack may differ depending on whether the service is
unavailable simply because of an overloaded communication
bus or the device is down because of the CPUʼs failure to meet
the required processing time while processing a huge amount of

messages. Hence, attacks should be more finely distinguished to
be reliably detected and classified.

5.2	 Finer	 classification	 through	 the	 integration	 of	 internal	
state anomalies

The attack detection-and-classification algorithm explained in
Chapter 4 assumes that the anomalies to be detected are
external inputs. Meanwhile, however, as shown by the example
given in Section 5.1, an algorithm needs to make judgments on
external inputs as well as the internal state of the embedded
device to ensure a proper response. If a device is in an
anomalous internal state or behaving anomalously, such a state
or behavior should also be defined as an “anomaly.” Moreover,
attacks detected at the occurrence of anomalies due to the
internal state of the device should be finely classified as new
types of attacks. We added this finer classification to the attack
state-transition diagram in Fig. 3 to implement an attack
detection function for making integrated judgments based on
both external input anomalies and internal state anomalies. Fig.
4 shows a typical attack state-transition diagram with a finer
classification of attacks.

Fig. 4	 Typical	attack	state-transition	diagram	with	a	finer	classification	of	attacks	
through the integration of internal state anomalies

6. Implementation of the algorithm
6.1	Model	intended	for	in-vehicle	ECUs
We developed a model that assumes that the device in which the
algorithm is to be implemented is an electronic control unit for
in-vehicle installation (hereafter “in-vehicle ECU”). Being a
lower resource among embedded devices and, as explained in
Chapter 1, exposed to security attack risks, in-vehicle ECUs are
suitable for the technology presented herein to be applied to.
Table 2 shows the hardware specifications. This hardware
includes an in-vehicle one-chip microcontroller as its CPU and
has a multiple number of channels compliant with CAN, one of

3

the standard in-vehicle network protocols. Additionally, the
hardware performs transmission and reception of specified
messages as its intended function for ECUs.

Table 2	Hardware	specifications	for	the	model	intended	for	in-vehicle	ECUs

Item Specification

CPU	clock	speed 96 MHz

Flash ROM 1 MB

RAM 128 KB

Communication protocol CAN

Transfer rate 500 kbps

Control period 1 ms

6.2	 Algorithm	implementation	method
The attack classification algorithm developed this time makes
separate judgments on attacks based on their types and hence
can perform high-speed processing by bit operations. As
explained in Chapter 4, in connection with attack classification,
attacks are modeled as irreversible state transitions. Hence, the
algorithm judges that a certain attack A has occurred when the
following conditions are both met: all transition conditions
leading up to A are met (IN Conditions), and none of the
conditions for the transition from A to the next are met (OUT
Conditions). Fig. 5 shows the conceptual diagram for this
judgment.

All the IN Conditions hold as ANDed conditions and hence
can be expressed as a bit string. The data set with a value of 1
for the bit corresponding to the anomaly constituting an IN
Condition and a value of 0 for the other bits in a bit string is
called an IN Condition bitmask. An OUT Condition can
similarly be expressed using a bitmask.

If for a detected anomaly, a bit string is available with the
value of the bit for the detected anomaly being 1 and that of
other bits being 0, the algorithm can tell whether an IN or an
OUT Condition has occurred by performing a single AND
operation with each of their respective bitmasks. In other words,
two bit operations suffice to determine that a single attack has
been detected.

Fig. 5 Judgment criteria based on the attack state-transition diagram

Then, for the algorithm thus implemented, the CPU
computational load and the data capacity need to be estimated.

Fig. 6 shows the bitmasks necessary for the IN and OUT
Conditions of each attack, assuming that n types of attacks are to
be detected and, for their detection, m types of anomalies are to
be detected.

Fig. 6 Bitmasks required for attack detections

Let us here estimate the CPU computational load. Assuming
that the CPU is a 32-bit CPU commonly used for in-vehicle
ECUs, 32 bitsʼ worth of data can be processed per operation;
hence, the number of times of operation is 2×[m/32]×n times.

Similarly, let us estimate the required data capacity. Data are
stored in bytes (1 byte = 8 bits); hence, the required data
capacity is 2×[m/8]×n bytes.

6.3	 Specifications	 for	 the	 attack	detection-and-classification	
function

For the model intended for in-vehicle ECUs, we designed and

KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

4

KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

developed a security measure. Using this security measure, we
identified the attacks to be classified and the anomalies to be
detected for attack detection. As a result, the number of types of
attacks to be classified increased to 11. Table 3 and Fig. 7 show
the specifications for the designed attack detection-and-
classification function.

Table 3	Specifications	for	the	attack	detection-and-classification	function

Item Specification

Types	of	detectable	and	classifiable	attacks 11

Types	of	anomalies	used	for	attack	detection	and	classification 45

Fig. 7 Designed attack state-transition diagram

Let us apply these functional specifications, together with the
hardware specifications in Section 6.1, to the estimation results
in Section 6.2 to estimate the actual processing time and data
capacity. The parameters n and m in Section 6.2, in other words,
the number of types of attacks and the number of types of
anomalies, are n = 11 and m = 45, respectively.

The estimated CPU computational load is 44 bit operations.
Assuming that a bit operation completes in one CPU clock
period, the processing time required for the operations is
approximately 44/(96×106) ≈ 0.5 μs, which is approximately
1/2,000 of a control period of 1 ms. Meanwhile, the estimated
data capacity is 132 bytes, which is approximately 1/8,000 of a
flash ROM capacity of 1 MB.

From the above, our algorithm is expected to be
implementable in embedded devices, such as in-vehicle ECUs,
with no problem with the computational load and the data
capacity.

7. Evaluation of the implemented model
7.1	 Requirements
The requirements for the attack detection-and-classification

function are defined as follows:
• Proper function

Ability to perform correct detection and classification for all
the defined attack types

• Performance sufficient to run in real time without disrupting
the inherent function of the embedded device
Sufficiently low memory usage (less than 10% of the
respective capacities of the flash ROM and the RAM)
Even under the heaviest load, the total time of all functions
does not exceed the control period (1 ms).

7.2	 Functional	evaluation
Table 4 shows the attack method we set for each of the defined
attack types.

Table 4	Test	cases	for	the	attack	detection-and-classification	function

No. Type of attack Description of attack

1 Scanning
Injecting brute force attack messages from the
attack device into the communication path to
identify a CAN ID

2 Message tampering
Rewriting and forwarding data through an
intermediate device inserted in the communication
path

3 Unauthorized	
message insertion

Injecting illegal messages with the same IDs as
those of legal messages from the attack device into
the communication path

4 Illegal
authentication

Using	an	illegal	encryption	key	to	start	an	
authentication sequence from the attack device

5 Message blocking
Selectively blocking messages with certain IDs
using an intermediate device inserted in the
communication path

6 Hardware attack
Causing an hardware error by sending illegal
signals from the attack device only during the
transmission of a message with a certain ID

7 Communication
denial of service

Injecting a huge amount of messages not meant to
be received from the attack device into the
communication path to saturate the
communication

8 Control denial of
service

Injecting a huge amount of messages meant to be
received from the attack device into the
communication path to saturate the control
process

9 Security log
tampering

Tampering the security log on the nonvolatile
memory and start the model

10 Firmware
tampering

Tampering	the	firmware	on	the	nonvolatile	memory	
and start the model

11 Configuration	data	
tampering

Tampering	the	configuration	data	on	the	
nonvolatile memory and start the model

Fig. 8 shows the schematic of the system configuration as
tested.

5

Fig. 8	 System	configuration	schematic

The points of attack corresponding to the test case numbers
in Table 4 are indicated by the numbers in the balloons in the
figure. Table 5 shows the results of running the test cases in
Table 4 with the system configuration in Fig. 8.

Table 5	Test	results	for	the	attack	detection-and-classification	function

No. Elapsed time
(ms)

Result of attack detection and
classification Judgment

1 1 Scanning OK

2 1 Message tampering OK

3 1 Unauthorized	message	insertion OK

4 1 Illegal authentication OK

5 200 Message blocking OK

6
 200 Message blocking OK

 226 Hardware attack

7

 1 Scanning OK

 38 Message blocking

1419 Communication denial of service

8

 1 Unauthorized	message	insertion OK

 27 Message blocking

 376 Control denial of service

9 — Security log tampering OK

10 — Firmware tampering OK

11 — Configuration	data	tampering OK

For each of Test Cases Nos. 1 to 11, the type of attack
detected and classified and the elapsed time from the start of
attack until its detection and classification are shown in the
above table. Although some types of attacks were first detected
as another type of attack, they were eventually detected and
classified as the expected attack, hence resulting in no problem.
The elapsed times for Cases Nos. 9 to 11 are shown as N/A
because the attacks in these cases were detected during the
initialization process at the start of the model intended for
ECUs. The above results confirm that the implemented attack
detection-and-classification function correctly worked as
supposed to.

7.3	 Performance	evaluation
This section first shows the confirmed results on the memory
usage. The flash ROM capacity used by the attack detection-

and-classification function is the total of the data capacity
required for the bitmasks shown in Section 6.2 and that required
for the algorithm code. The RAM capacity to be used is the
amount of space required to save the execution state and is
statically reserved. Table 6 shows the results of memory usage
measurement.

Table 6 Results of memory usage measurement by the attack detection-and-
classification	function

Item
Memory usage

Requirement Performance

Flash ROM Below 100 KB 6.2 KB

RAM Below 12.8 KB 8.4 KB

Both the flash ROM usage and the RAM usage are below 10
percent of the respective total capacities of the flash ROM and
the RAM shown in Table 2. Thus, the requirements are met. The
confirmed results on the processing time are as follows:

We measured the processing time by observing the digital
signal waveforms using the software we modified so that a
digital signal output would occur at each switchover of the
internal processing. The modification affected the processing
time only to a negligible degree. Fig. 9 shows the results of the
processing time measurement. Even when the maximum
processing time was reached and hence the communication load
was 100 percent, the requirement of 1 ms or less was met with
a safe margin. These results confirm that the implemented attack
detection-and-classification function has performance sufficient
to run in real time without disrupting the inherent function of
the embedded device.

Fig. 9	 Processing	time	in	the	model	intended	for	in-vehicle	ECUs

From the above, we believe that the algorithm implemented
this time is a practically feasible technical solution to detect and
classify attacks without compromising the inherent function of
even a low-resource embedded device.

KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

6

KOGAWARA Toru et al. Implementation of Real-time Security Attack Detection and Classification Algorithms for Embedded Devices

8. Conclusions
As a solution to the challenge of performing attack detection
and classification on embedded devices in real time, we
developed a high-speed, lightweight attack detection-and-
classification algorithm able to run on embedded devices.
Additionally, we improved the attack detection-and-
classification algorithm for a finer classification of attacks and
the proper selection of appropriate actions.

Moreover, we implemented the developed algorithm in actual
embedded-device hardware to run functional and performance
tests. The test results have shown that the algorithm has
performance sufficient to run in real time while achieving a
finer classification of attacks.

With this technology implemented in an embedded device, all
the necessary steps up to emergency response actions would be
taken immediately after the encounter with a security attack.
Moreover, this technology allows the fine classification of
attacks down to an appropriate degree of granularity and hence
enables automatic selection and execution of an emergency
response action matching the type of attack encountered.

When, in the future, we can set appropriate emergency
response actions for the types of attacks, we will be able to
minimize damage from security attacks on embedded devices.

The development presented here was intended for
implementation in in-vehicle ECUs and hence was customized
to the needs of in-vehicle ECUs with the focus mainly on the
anomaly detection method and scheduling. From now on, we
intend to deploy this technology to embedded devices in areas/
fields other than in-vehicle ECUs.

References
1) C. Miller and C. Valasek. “Remote Exploitation of an Unaltered

Passenger Vehicle,” ilmatics.com, http://ilmatics.com/RemoteCar
Hacking.pdf, (accessed Nov. 27, 2019).

2) A. Shingo, “Recent Threats to Control Systems and Activities of
JPCERT/CC” (in Japanese), 5th SICE Multi-symp. Control Syst.,
http://mscs2018.sice-ctrl.jp/program/_tutorials/
mscs2018tutorial_ abe.pdf, (accessed Nov. 19, 2019).

3) National Institute of Standards and Technology, “Framework for
Improving Critical Infrastructure Cybersecurity,” Cybersecurity
Framework，https://www.nist.gov/cyberframework/framework,
(accessed Nov. 27, 2019).

4) Blue Planet-Works, “Product Profile: AppGuard” (in Japanese),
AppGuard, https://www.blueplanet-works.com/solution/appguard.
html, (accessed Nov. 20, 2019).

5) H. Naoki, “Introduction to Attack Detection and Classification
Technologies for General-Purpose Embedded Devices” (in
Japanese), in Proc. 4th IoT Security Forum, Tokyo, Japan, Jul. 30,
2019.

6) Microsoft. “The STRIDE Threat Model,” https://docs.microsoft.

com/en-us/previous-versions/commerce-server/ee823878 (v=cs.20),
(accessed Jan. 8, 2020).

7) T. Kogawara, “Proposal for an Attack State Transition Approach to
Attack Detection and Classification Technologies for Embedded
Devices.” (in Japanese), in Proc. SCIS2020, Kochi, Japan, Jan. 20,
2020, no. 2E2-4.

About the Authors

KOGAWARA Toru
Technology Research Center
Technology and Intellectual Property H.Q.
Speciality: Software Science

YAMAMOTO Taisei
Technology Research Center
Technology and Intellectual Property H.Q.
Speciality:Electrical, Electronical and Information engineering

ZENG Zhen
Technology Research Center
Technology and Intellectual Property H.Q.
Speciality: Software Engineering

HIROBE Naoki
Technology Research Center
Technology and Intellectual Property H.Q.
Speciality: Software Engineering

The names of products in the text may be trademarks of each company.

7

