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Bin-Picking of Non-Rigid Objects and 
Irregular-Shaped Objects
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In this paper, we deal with the grasping points estimation for robotic bin picking. Usually, grasping points are 
estimated by using 3D CAD of the object to be grasped. However, it becomes difficult to estimate the grasping 
points for non-rigid objects or irregular-shaped objects that do not have any specific 3D CADs. In order to realize 
bin picking of non-rigid objects and irregular-shaped objects, we employ a model-less grasping point estimation 
method that can estimate the grasping points without using 3D CAD. As an estimation method for a two-fingered 
hand, we propose a method that detects the insertion candidates independently for the left and right fingers and 
pairs the candidates to efficiently estimate the grasping candidates with multiple opening widths of the hand. As 
an estimation method for a suction hand, we propose a method that extracts flat areas based on the variance of the 
local surface orientation of a depth map and estimates the optimal grasping points from the flat areas. Using the 
proposed methods for two-fingered hands and suction hands, a robot successfully grasped non-rigid objects and 
irregular-shaped objects with a grasping success rate of 96%. Moreover, the computation time of both proposed 
methods is 250 msec on the Intel Core i7-7700 @ 3.60 GHz, which allows real-time bin picking.

1. Introduction
Many tasks on manufacturing shop floors and in logistics 
warehouses involve workers picking and moving objects to 
specified locations. For example, when feeding parts onto the 
production line in an automotive factory, the line workers pick 
randomly piled parts one by one from containers. Such a line 
production system requires a large number of personnel, 
including workers in charge of only simple tasks, such as parts 
picking. Meanwhile, with the worsening working population 
shortage in recent years, demands are rising for machines 
replacing and automating such simple tasks. As a method for 
such automation, the so-called part feeders are sometimes used, 
which are dedicated machines used exclusively for parts 
feeding. Each part feeder is, however, a custom-built machine 
designed for a specific type of part. Hence, they pose the 
problem of an increased number of production line start-up 
person-hours. For this problem, a general-purpose robot able to 
pick various randomly piled parts may be installed to automate 
parts feeding and reduce the number of line start-up person-
hours.

For automated bin picking to work, optimal grasp points for 
the robot must be estimated from images/depth maps capturing 

the target objects to grasp. Where there is a need to pick rigid 
bodies, such as industrial parts, 3D CAD models are used to 
estimate the r 6D pose of the target objects to grasp1,2). When it 
comes, however, to shape-variable objects (non-rigid objects), 
such as cables or bags and pouches, or objects individually 
different in shape (irregularly shaped objects), such as food or 
agricultural products, no specific 3D CAD models are available, 
making it difficult to estimate the 6D pose of the target objects 
to grasp. As a solution to this problem, a model-less grasp point 
estimation method is effective. This method makes it possible to 
estimate the grasp points and rotations of a robot hand from its 
shape and measurement data, instead of estimating the 6D pose 
of the object, in other words, without the need for a 3D model 
of the target object to grasp. Where an estimation must be made 
of the type and posture of a non-rigid object or an irregularly 
shaped object, a model-less grasp point estimation is performed 
as a preparatory processing step. Accordingly, high processing 
speed is required as much as the estimation of stable grasp 
points.

In this paper, we propose high-speed, model-less grasp point 
estimation methods for grasping non-rigid objects and 
irregularly shaped objects. Because industrial robots are usually 
equipped with a two-fingered hand or a suction hand, we 
propose a method intended for each of these two types of 
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hands. Fig. 1 shows a typical example of a two-fingered hand 
and that of a suction hand.

Fig. 1	 Two-fingered	hand	(left)	and	suction	hand	(right)

2. Related works
Model-less grasp point estimation methods fall broadly into 
machine learning-based methods that estimate the optimal grasp 
points of target objects to grasp by learning and hand model-
based methods that use a robot hand model and search for 
optimal grasp points for the shape of the hand.

2.1 Machine learning-based grasp point estimation
In a model-less grasp point estimation, no information on the 
object is available beforehand. Hence, many proposals have 
been made for methods to learn the optimal grasp points of 
various objects through a deep neural network (DNN)3-10). 
Redmon et al. proposed a method that defines the 
correspondences between a 7×7 grid of split input images and 
a 7×7 DNN-output feature map and obtains by regression 
calculations the six-dimensional data (coordinates for the center 
of grasping, width and height, rotational angle, and confidence 
value for grasping) of a two-fingered hand from each pixel of 
the feature map6). There have also been proposals made for 
methods of estimating a target grasp area by solving a semantic 
segmentation classification problem using a fully convolutional 
network (FCN)7,8). Dex-Net 3.0/4.0 learns a DNN that computes 
the robustness of grasping for patch images around grasp points 
as probability 9,10). With the use of a DNN as in these methods, a 
high- accuracy grasp point estimation becomes available but 
may be challenging to introduce because it requires a high-
performance computing machine and a massive amount of 
training image with annotation.

2.2 Hand model-based grasp point estimation
A method of searching for grasp points from images based on 
the shape of a robot hand is available as a grasp point 
estimation method that does not require machine learning. In a 
fast graspability evaluation (FGE)11,12), 2D binary images of the 

handʼs shape are convolved into the object segments in depth 
maps to perform high-speed grasp point searching. When 
applied to a two-fingered hand, the FGE faces the problem of 
increased computing time. More specifically, non-rigid or 
irregularly shaped objects are individually different in size and 
hence require searching for grasp points for multiple hand-
opening widths. As a result, the required computing time 
increases proportionally to the number of hand-opening widths. 
In the application of FGE to a suction hand, the flatness of the 
object segments to be extracted is not taken into consideration: 
suction grasping of irregularly surfaced segments results in the 
problem of a reduced grasp success rate.

In this paper, we propose model-less grasp point estimation 
methods, which provide the advantage of saving the need for 
preparing a large amount of training images and opt instead for 
a hand model-based grasp point estimation as a solution to 
overcome the problems mentioned above with FGE. Being 
aware of the difficulty of developing a single algorithm able to 
define the optimal points for both a two-fingered hand and a 
suction hand to grasp an object, we propose two separate 
algorithms for a model-less grasp point estimation for a two-
fingered hand and a suction hand.

3. Model-less grasp point estimation for the 
two-fingered hand

3.1 Outline of the algorithm
Non-rigid or irregularly shaped objects, such as food products, 
vary in size from one to another. Hence, in the estimation of the 
optimal grasp points for a two-fingered hand, searching must be 
performed for multiple hand-opening widths. As a result, the 
required computing time increases proportionally to the number 
of hand-opening widths. As a solution to this problem, we 
propose the detection of insertion point candidates separately 
for each of the right and left fingers of the two-fingered hand 
(one-finger insertion point candidate detection) and the pairing 
of the left-finger and right-finger insertion point candidates to 
achieve high-speed grasp point candidate estimations for 
multiple hand-opening widths. Fig. 2 shows the overall view of 
the algorithm. As an illustrative example, a randomly piled 
deep-fried chicken nuggets is used here. A depth map based on 
3D sensor measurements is used for the grasp point estimation. 
To search for grasp point candidates in various directions 
around the optical axis of the 3D sensor, rotated depth maps in 
increments of ∆θ are generated and grasp point candidates are 
detected based on one-finger insertion point candidates. The 
grasp point candidates are not searched obliquely on the depth 
map. The reason is that these images allow for a horizontal 
search, the processing efficiency of which is higher than that of 
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oblique search. The grasp point candidates thus detected from 
each rotated depth map are merged into a single depth map for 
the grasp point estimation based on priority ordering. The 
following three sections of this chapter explain one-finger 
insertion point candidate detection, pairing, and priority 
ordering, respectively.

Fig. 2	 Overall	view	of	model-less	grasp	point	estimation	algorithm	for	 the	two-
fingered	hand

3.2	 One-finger	insertion	point	candidate	detection
Insertion point candidates are detected separately for each of the 
right and left fingers of the two-fingered hand. The following 
two grasping conditions are essential for the two-fingered hand 
to grasp an object stably:

1. There is an edge of a height sufficient to allow a firm grasp 
of an object.

2. There is a sufficient amount of space to allow finger 
insertion without causing any interference.

One-finger insertion point candidates meeting these 
conditions hence need to be detected. First, a horizontal 
differential filter is applied to the original depth map to detect 
the distance edge intensity in the horizontal direction. Then, 
pixels with an absolute distance edge intensity value equaling or 
exceeding a threshold are extracted. Here, pixels with a minus 
sign for the distance edge intensity show a change in distance 
relative to the 3D sensor from far to near along the plus 
direction of the x-axis of the depth map and are hence defined as 
left-finger insertion point candidates. Meanwhile, pixels with a 
plus sign show a change from near to far and are hence defined 
as right-finger insertion point candidates. These results include 
insertion point candidates that may cause interference. 
Therefore, any insertion point candidate must be excluded if the 

insertion of the right or left finger into the obtained edge point 
results in interference between the finger and the measurement 
point group. Fig. 3(a) shows typical one-finger insertion point 
candidates.

(a)	One-finger	insertion	point	candidates

(b)	pairing	results

Fig. 3	 One-finger	insertion	point	candidates	and	pairing	results

3.3 Pairing
The obtained left-finger and right-finger insertion point 
candidates undergo pairing to generate grasp point candidates. 
For a given left-finger insertion point candidate, a right-finger 
insertion point candidate to be paired with it exist in the 
horizontal direction of same y-coordinates because the depth 
map was rotated beforehand. Pairing occurs to the right-finger 
insertion point candidate that is to the right of the left-finger 
insertion point candidate and within the hand-opening width. 
For each pair, the height of a convex portion in an object 
physically graspable by the right and left fingers (convex 
portion height) is calculated. Then, if the calculated value 
exceeds a specified threshold, the point at this height is 
registered as a grasp point candidate. When the top- and 
bottom-end distances of the edge at the left-finger and right-
finger insertion point candidates are ztopLetf Right{ , } and zbottom

Letf Right{ , }, 
respectively, the convex portion height can be calculated as min 
min , max ,z z z zbottom

Left
bottom
Right

top
Left

top
Right( ) − ( ). The resulting grasp point 

candidates often cluster around the same point. Hence, mutually 
proximate grasp point candidates are merged to narrow down 
the candidate list. Fig. 3(b) shows typical pairing results. The 
{red, blue} lines indicate the selected {left finger, right finger} 
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insertion point candidates, and each pair is connected by a green 
line.

3.4 Priority ordering
The grasp point candidates searched from multiple rotated depth 
maps are merged for rearrangement in order of priority. The 
graspability of an object can be defined from various 
perspectives, such as its proximity, the height of its convex 
portion, and the linearity of its gripping portion. Our proposed 
technique uses three different types of graspability metrics, in 
other words, distance, convex portion height, and gripping 
portionʼs linearity in combination to obtain comprehensive 
evaluation scores. This method performs priority ordering by 
arranging grasp point candidates in descending order of their 
evaluation scores.

4. Model-less grasp point estimation for the 
suction hand

4.1 Outline of the algorithm
The following two grasping conditions are of importance for the 
suction hand to grasp an object stably:

1. The suction hand vertically approaches the surface of the 
actual grasp target object to achieve a firm suction.

2. The suction hand suctions on a flat area on the grasp target 
object so as not to let air leak from its suction pad.

For the satisfaction of these two suction-grasping conditions, 
flat area extraction is performed based on variance of the 
normal vectors in the depth map to estimate grasp point 
candidates. A normal vector represents the local planar 
orientation of 3D measurement data. Therefore, an area can be 
said to be a flat area when the normal vectors around it are 
oriented in the same direction, in other words, when variance of 
the normal vectors is small . Because the normal vectors 
obtained at the time of flat area extraction are reusable, the 
approach angle for the grasp point can be determined without 
the need for a complicated computing process, allowing high-
speed grasp point estimations.

The flow of the suction-grasp point estimation by our 
proposed technique goes as follows: first, a flat area on the 
object is extracted from the depth map to determine the 
graspability (grasp evaluation score) based on each pixel in the 
flat area. Then, based on the grasping pose at a point with a 
high grasp evaluation score, the 3D points in the surrounding 
area is examined for interference with the hand model to find 
and register interference-free points as grasp point candidates. 
The rest of this paper uses, as an example, the depth map of 
randomly piled hinges in Fig. 4(a) to explain in detail our 
proposed technique.

4.2 Flat area extraction based on variance of normal vectors
A planar model that satisfies zi = axi + byi + c is fitted by the 
least-squares method to the 3D measurement data (xi, yi, zi) in 
the local rectangular area on the input depth map. From the 
coefficients a and b of the planar model, the angles in the x- and 
y-axis directions of the normal vectors are estimated and then 
normal map is generated (Fig. 4(b)).

Fig. 4	 Flat	area	extraction	process

A flat area shows a lower variability of normal vectors, 
whereas an irregularly surfaced area shows a higher variability 
of normal vectors. Hence, for each local rectangular area, the 
variance of normal vectors must be calculated (Fig. 4(c)). Then, 
if the variance of normal vectors thus determined is below a 
given threshold, a binary image of each flat area is generated by 
plane label assignment. The binary image of each flat area 
undergoes a labeling process to produce a labeled flat area (Fig. 
4(d)).

The above process allows the extraction of the flat areas in 
randomly piled objects. If, however, a multiple number of target 
objects to grasp of the same height are adjacent to one another, 
the differences between the distances near the object boundaries 
will be minute, posing the problem of under-segmentation, in 
other words, extraction of a multiple number of object planes as 
a single object plane. Then, an area segmentation process based 
on the Watershed algorithm13) is applied to the labeled flat area 
image. The Watershed algorithm consists of flat area image 
distance transformation, area erosion , relabeling, and relabeled 
area dilation . Distance transformation is a process that 
computes the distance of each pixel in a flat area based on non-
flat area data. In the resulting image, a planar pixel at a 
considerable distance from non-flat areas has a large value, 
while one at a close distance from non-flat areas has a small 
value. Therefore, when pixels with a small distance 
transformation value are extracted from flat areas, the flat areas 
undergo erosion processing , resulting in the division of the flat 
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areas of multiple objects into segments. Then, the flat areas 
segmented by the erosion processing are relabeled. The 
relabeled flat areas are allowed to dilate until they reach their 
pre-erosion sizes or come into contact with each other. This 
series of processes reduces under-segmentation and hence 
allows accurate flat area extraction.

4.3 Grasp point candidate detection based on grasp 
evaluation score

Where there is a need to identify a point convenient for 
grasping within each extracted flat area, a grasp evaluation 
score calculation is performed. A grasp evaluation score 
represents the graspability within a flat area, and this score is 
determined comprehensively based on several types of 
graspability metrics, such as the distance to the planar center of 
gravity, the normal vector dispersion, and the grasp approach 
angle. In practice, thresholds are set for these types of 
graspability metrics to divide their respective scale of 
graspability into three score levels {A, B, and C}. An ultimate 
grasp evaluation score is assigned to be higher proportionally to 
the number of Aʼs and lower proportionally to the number of Cʼ
s. This process is performed for all the pixels in the flat area. 
Fig. 5(a) shows the results of the grasp evaluation score 
calculation. The variance of normal vectors was calculated at 
the time of flat area extraction, and the grasp approach angle 
need not be calculated by a separate process because the normal 
direction is used as such. Thus, the grasp evaluation score for 
each flat area can be calculated at high speed.

Fig. 5	 Results	 of	 grasp	 evaluation	 score	 calculation	 and	 grasp	 point	 candidate	
estimation

After grasp evaluation scores are calculated for all pixels 
in the flat areas, grasping poses are calculated from the image 
coordinates in descending order of their grasp evaluation scores. 
Then, the hand model in each calculated grasping pose is 
examined for interference with the 3D points in the surrounding 
area. The approach angle for calculating each grasping pose can 
be determined while saving the need for unnecessary calculations 
by the reuse of the normal vectors estimated at the time of flat 
area extraction. For each coordinate position, grasping-pose 
calculation and interference determination are repeated. Then, a 
coordinate position determined as interference-free is registered 
as a grasp point candidate. This process is performed for all the 

flat areas. Fig. 5(b) shows the grasp point candidate registered 
for each flat area.

4.4 Priority ordering
After grasp point candidates calculation, each grasp point 
candidate is given a priority order. Basically, a grasp point with 
a high grasp evaluation score is given a high priority. In some 
cases, however, a multiple number of grasp point candidates 
occur with an evaluation score equivalent to that of the others. 
In such cases, from a set of graspability metrics, such as the 
distance to the planar center of gravity, the variance of normal 
vectors, and the grasp approach angle, a desired metric is 
selected to sort grasp point candidates of the same evaluation 
score.

5. Evaluation experiment
5.1 Evaluation method
We performed an evaluation experiment to confirm the 
effectiveness of our proposed techniques. We used a 3D sensor 
to capture images of randomly piled target objects to grasp. 
From the captured images, grasp points were estimated. We 
used a six-axis vertical articulated robot to pick up each grasp 
target object based on the estimated grasp point and place them 
to their respective specified locations. The robot makes a grasp 
try for each high-priority grasp point within its movable area . 
For each type of object, the grasp success rate was calculated 
based on the ratio between the number of grasp tries made by 
the robot and the number of objects picked and successfully 
placed to the specified location. Moreover, we also evaluated 
the processing time required for grasp point estimation per 
image. Because the grasp point estimation process is performed 
every time before the robot makes a try, we calculated the 
average required processing time per run of the grasp point 
estimation process. The 3D measurement sensor and the vertical 
articulated robot used this time were an iDS-manufactured 
Ensenso X36 and an OMRON-manufactured Viper650, 
respectively. A computer equipped with an Intel (R) Core (TM) 
i7-7700 @ 3.60 GHz CPU was used to measure the processing 
time.

5.2	 Evaluation	results	for	the	two-fingered	hand
The grasp target objects used in the evaluation experiment on 
our model-less grasp point estimation method for the two-
fingered hand were the four different types of objects differing 
in, for example, size, shape, and material, as shown in Fig. 6. 
Among these types of objects, deep-fried chicken nuggets, 
potatoes, and bananas are irregularly shaped objects, while 
power supply cables are non-rigid objects.
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Fig. 6	 Grasp	target	objects	for	grasp	point	estimation	for	the	two-fingered	hand

Table 1 shows the grasp success rate and the required 
processing time for each type of grasp target objects.

Table 1	 Evaluation	results	for	grasp	point	estimation	for	the	two-fingered	hand

Grasp target 
object

No. of successful 
placements achieved/

no. of tries made

Grasp success 
rate
[%]

Processing time
[msec]

Deep-fried	chicken	 
nugget 93/93 100.0 211

Potato 159/160 99.4 285

Banana 110/124 88.7 197

Power	supply	 
cable 39/40 97.5 221

Average 96.4 229

The results in Table 1 show that a high average grasp success 
rate of 96.4% was achieved. The contributory factor to this 
achievement was the estimated optimal hand-opening widths 
that allowed the maximization of the number of grasp point 
candidates relative to that achievable by a fixed hand-opening 
width. Globular objects, such as deep-fried chicken nuggets or 
potatoes, showed particularly high grasp success rates because 
they stably allowed detection of grasp point candidates from 
various angles. Only bananas showed a low grasp success rate 
of 88.7% because they were more often grasped unstably by a 
tricky handhold, such as either of the two ends. The average 
required processing time per run of the grasp point estimation 
process was approximately 229 msec, fast enough for a robot 
hand system to perform high-speed bin picking in real time. 
This achievement was possible because the pairing process after 
one-finger insertion point candidate detection saved the need for 
grasp point searching for multiple hand-opening widths and 
helped to reduce the amount of computations significantly. Fig. 
7 shows typical results of grasp point estimation for the two-
fingered hand.

Fig. 7	 Typical	results	of	grasp	point	estimation	for	the	two-fingered	hand

5.3 Evaluation results for the suction hand
The grasp target objects used in the evaluation experiment on 
our model-less grasp point estimation method for the suction 
hand were the five different types of non-rigid objects differing 
in, for example, size, shape, and material as shown in Fig. 8.

Fig. 8	 Grasp	target	objects	for	grasp	point	estimation	for	the	suction	hand

Table 2 shows the grasp success rate and the required 
processing time for each grasp target object.

Table 2	Evaluation	results	for	grasp	point	estimation	for	the	suction	hand

Grasp target 
object

No. of successful 
placements achieved/

no. of tries made

Grasp success 
rate 
[%]

Processing time 
[msec]

Flat	cable 38/39 97.4 72

Hand	soap	bottle 18/18 100.0 112

Mayonnaise	
packet 114/120 95.0 91

Plastic	part 65/68 95.5 75

Hinge 73/75 97.3 67

Average 97.0 83

The results in Table 2 show that a grasp success rate of 95% 
or more was achieved for all the grasp target objects. Thanks to 
a flatness-based plane extraction process and the determination 
of a proper grasp approach angle, stable suction grasping 
became possible. Hand soap bottles, in particular, showed a 
high grasp success rate because of their large physical size and 
relatively large flat area. The main cause of failed grasp 
attempts was that a grasp approach toward the vicinity of object 
boundaries occurred when object boundary determination on the 
depth map was difficult because of the small thickness of the 
objects, such as mayonnaise packets. Besides, some attempts to 

NISHINA Yuki et al. Model-less Grasping Points Estimation for Bin-Picking of Non-Rigid Objects and Irregular-Shaped Objects

6



NISHINA Yuki et al. Model-less Grasping Points Estimation for Bin-Picking of Non-Rigid Objects and Irregular-Shaped Objects

grasp plastic parts with shallow grooves on their surface failed 
due to the air leakage during suction.

The average required processing time per run of the grasp 
point estimation process was approximately 83 msec, fast 
enough for a robot hand system to perform high-speed bin 
picking in real time. The hand soap bottles required a longer 
processing time per grasp point candidate search or grasping-
pose calculation because of the large size of the flat areas 
extracted from their image. Fig. 9 shows typical results of grasp 
point estimations for the suction hand.

Fig. 9	 Typical	results	of	grasp	point	estimations	for	the	suction	hand

6. Conclusions
In this paper we proposed model-less grasp point estimation 
methods for a two-fingered hand and a suction hand. The grasp 
point estimation method for the two-fingered hand detects 
insertion point candidates separately for each of the right and 
left fingers of the two-fingered hand and makes the 
combinations of right- and left-finger insertion point candidates 
to perform high-speed searches for grasp point candidates for 
multiple hand-opening widths. The grasp point estimation 
method for the suction hand extracts flat areas based on the 
variance of normal vectors in a depth map and estimates grasp 
point candidates to achieve stable suction grasping of objects. 
When put to the tests of picking randomly piled non-rigid 
objects and irregularly shaped objects by the two methods 
proposed herein for the two-fingered hand and the suction hand, 
our robot achieved average grasp success rates of 96.4% and 
97.0% and also achieved high processing speeds of 229 msec 
and 83 msec on an Intel (R) Core (TM) i7-7700 @ 3.60 GHz 
CPU.

Future works is further improvement of the grasp success 
rate. Solutions must be developed with a focus on the causes of 
failed grasp attempts. Another challenge is usability 
improvement through the development of an automatic 
parameter tuning function able to replace the manual parameter 

tuning currently used for various parameters involved in our 
proposed techniques.
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