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Forecasting call arrivals at call center 
using dynamic linear model
YAMAMOTO Kiwamu and HATAYAMA Goro

Many companies have call centers to answer telephone calls from their customers. Call centers’ two major 
indices, service quality and running costs, have a trade-off relation; improving service quality needs additional 
operators, who require additional costs. To optimize the number of operators under the restriction of this trade-off, 
forecasting future call arrival volumes plays important role and accurate forecasting model is needed. Such model 
has to be capable of handling gradual fluctuations and effects of the special days (holidays, special events, etc.), 
and can be improved by utilizing knowledge of staffs. Dynamic Linear Model is a model with such capability. In 
addition, we can forecast the probability density of the call arrival volumes with this model, which can be utilized 
in determining the optimal number of operators.

In this paper, we propose a forecasting method using dynamic linear model, and also apply this model to a real 
data of a call center to show that we can make appropriate forecast of the future call arrival volumes over 2 
months and thereby can reduce over-arrangement of operators by 39.3%.

1. Introduction
The OMRON Field Engineering Group (OFE) has a service 
network consisting of 140 operational sites and 1,200 customer 
service engineers spread across the country. Through this 
network, we serve customers all over the country with 
engineering, field, and backup services. Call center operations 
play one of the key functions in providing these services. The 
operations at call centers fall largely into two categories. The 
first one is outbound operations that involve operators making 
phone calls to consumers and others for telemarketing. The 
second one is inbound operations that respond to calls received 
typically through customer help desks. OFEʼs call centers 
mainly handle the latter of these two categories of operations. 
For inbound operations, the ratio of the volume of calls 
effectively answered within a predetermined time to the total 
volume of received calls is regarded as one of the important 
service quality indicators. Therefore, we have to keep a 
sufficient number of operators to answer received calls. At the 
same time, however, this gives rise to personnel costs. 
Accordingly, the number of operators must be optimized to 
strike the proper tradeoff balance between service quality and 
cost. At OFE, the sufficient number of operators to meet the 
required service quality level is calculated from the mean hourly 
call volume and the mean call duration in order to deploy 
personnel accordingly. The problem here is that the call volume 

and call duration at a future point are unknown. This means that 
the number of operators has to be calculated using values 
predicted from past data. Therefore, the forecast accuracy for 
call volumes or call durations is of critical importance.

In some simple forecasting methods, the mean values for the 
preceding month, those on a same month year-ago basis, and 
those for each of the seven days of the week are used 
unchanged. If, however, a call volume shows more complex 
fluctuations, such methods alone fail to make accurate forecasts. 
In such an operational situation, an analyst often has to rely on 
their experience and intuition to adjust forecast values with 
considerations given to fluctuation factors unique to their call 
center. This kind of operation poses challenges, such as a time-
consuming forecasting process and an analyst-dependent 
forecast accuracy.

These challenges have led to a proposal for various call 
volume forecasting methods. Among examples of these 
forecasting methods are those based on general time-series 
analysis models, such as ARIMA models or exponential 
smoothing models1). These models can properly handle periodic 
fluctuations in time-series data. It is, however, difficult for them 
to handle patterns involving peculiar fluctuations unique to 
specific dates. Examples of forecasting methods for handling 
such peculiar fluctuations may include multiple regression 
model-based forecasts2). A multiple regression model can easily 
take into explicit consideration fluctuation factors unique to 
individual call centers, in addition to calendar information such 
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as years, days of the week, and week numbers, and therefore 
can serve as a model with high explanatory power. Multiple 
regression models, however, have difficulties in handling non-
stationary time series that involve a gradual change in the mean 
value or in the magnitude of the impact from fluctuation factors. 
With data of this kind, they may show a gradual decrease in 
forecast accuracy over time. In actual call volume data, patterns 
have been observed with a change in the mean value or in the 
magnitude of fluctuations over time. Hence, we consider it 
necessary to develop a model capable of properly handling such 
changes.

Among the so-called state-space models, there are models 
called dynamic linear models. These models have more than one 
fluctuation factor and can flexibly handle time-series data 
containing unsteadiness, structural changes, or irregular 
patterns3). Not only can these models easily take into 
consideration fluctuation factors unique to call centers, but can 
also make forecasts that follow long-term, gradual fluctuations. 
Moreover, what characterizes these models is their ability to 
determine the uncertainty of forecast results in the form of 
probability distributions. This allows quantitative evaluation of 
the occurrence probability of, and magnitude of, the error 
between forecast and actual results3). We expect that, based on 
the probability distribution of the obtained error, we will be able 
take risk reduction measures of increasing the number of 
operators according to the magnitude of the predicted error on a 
day when a significant deviation from the forecast results is 
very likely to occur.

For this paper, we examined the results of dynamic linear 
model-based forecasts made for ATM-related call volume data 
handled at OFEʼs call centers for financial institutions. Our 
examination found that our model can make call volume 
forecasts up to two months ahead with reasonable accuracy and 
that the improved forecast accuracy helps to decide on more 
appropriate operator deployment.

This paper is structured as follows: Chapter 2 provides 
descriptions of call volume characteristics, Chapter 3 presents a 
dynamic linear model and describes specific models, and 
Chapter 4 presents the results of forecasts based on actual data.

2. Call volume characteristics
2.1 Overall tendency
Fig. 1 shows the plot of the volumes of intraday calls received 
at OFEʼs call centers from financial institutions in the period 
from April 1, 2015, to March 31, 2018. The first point revealed 
by the figure is that weekday call volumes significantly differ 
from those on Saturdays and holidays. Second, while the 
behaviors of the weekday call volumes exhibit a certain degree 

of seasonality, their fluctuation band is unstable and they as a 
whole constitute a non-stationary time series. Note that the solid 
line in Fig. 1 shows the moving mean of the weekday call 
volumes and can be regarded as a trend reflecting seasonal 
factors.

Fig. 1 Time-series chart of intraday call volumes

2.2 Tendencies unique to call centers
Many of our call centers are considered to have their own 
tendencies that contribute to increases or decreases in call 
volume. We considered it possible to enhance the accuracy of 
forecasts by incorporating such tendencies identified through 
interviews with related frontline staff and observation of data.

OFEʼs call centers handle ATM equipment-related inquiries 
from financial institutions. It has been empirically known 
among frontline staff that the call volume tends to increase on 
days expected to see more frequent use of ATMs than usual. 
Such days include the 25th day of each month on which the 
monthly payday usually falls, the 15th day of each month on 
which the monthly pension payment day falls, and the days 
immediately before and after consecutive holidays. Data 

Fig. 2 Frequency distributions of intraday call volume on the payday and pension 
payment day of each month
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were detected from the available data (Fig. 4).
Hearing sessions were held with OFE personnel to make a 

list of factors probably responsible for fluctuations. We 
examined the magnitude of impact of these factors on call 
volume. Based on the obtained results, we decided to 
incorporate into the forecasting model the nine items shown in 
Table 1 as special factors responsible for fluctuations in call 
volume.

Table 1  Factors responsible for fluctuations in call volume

Factor Details

Saturday Saturdays

Sunday or holiday Sundays and national holidays

Year-opening business day Year-opening business day

Year-end business days The business days falling on and after December 
20, and Fridays in December

End of each month The last business day of each month

Payday
The 25th day of each month (if this day falls on a 
Saturday, Sunday, or a national holiday, the 
immediately preceding weekday) and the next 
business day

Pension payment day
The 15th day of each month (if this day falls on a 
Saturday, Sunday, or a national holiday, the 
immediately preceding weekday) and the next 
business day

Day immediately before 
consecutive holidays

The day immediately before three or more 
consecutive holidays

Day immediately after 
consecutive holidays

The day immediately after three or more 
consecutive holidays

3. Methods of call volume forecasting
3.1 Multiple regression model
This section outlines a multiple regression model, which has 
been conventionally used to analyze time-series data including 
unique fluctuation factors such as those described in Chapter 22). 
This multiple regression model is expressed by Equation (1). It 
is a model specified by regarding the subject as a linear 
combination consisting of an N number of explanatory variables 
Xi and calculating from past data the coefficient ai of each Xi and 
the constant term b.

 y a X bi i
i

N

= +
=
∑

1
 (1)

With the time-series factors of years, months, and days of the 
week included as explanatory variables, this model can be 
applied for time-series analysis. Moreover, it can be easily 
added with fluctuation factors other than time-series ones to 
provide an easy method of describing call center-specific factors 
responsible for fluctuations in call volume.

The multiple regression model, however, has difficulties in 
handling non-stationary time series with a moving mean over 
time. As can be seen in Fig. 1, the mean call volumes at OFEʼs 
call centers have been changing over the years. For such data, a 
model capable of more flexibly handling non-stationary time 
series is desirable.

Fig. 3 Frequency distributions of intraday call volume on the days immediately 
before and after consecutive holidays

analysis has confirmed that such tendencies do actually exist 
(Figs. 2 and 3).

On the other hand, in some cases, data has revealed that 
some empirically assumed factors responsible for increases or 
decreases do not, in fact, make much difference. Therefore, it 
takes careful study to determine what factors are actually 
responsible for increases or decreases. For example, despite the 
traditional assumption that the call volume would increase on 
the first day of each month and the days in increments of 5 also 
known as the days ending in 5 or 0, no significant differences 

Fig. 4  Frequency  distributions  of  intraday  call  volume  on  the  first  day  of  each 
month and on the days ending in 5 or 0

3



3.2 State-space models and dynamic linear models3)

An example of model having characteristics such as those 
mentioned above is provided by a state-space model. State-
space models are highly flexible models applicable to time 
series containing unsteadiness, structural changes, or irregular 
patterns. Among these models, ones that is assumed to be linear 
and the noise of which is assumed to follow a Gaussian 
distribution are called dynamic linear models.

A state-space model does not directly model the fluctuations 
of the observed value Yt but assumes that an unobservable 
Markov chain θt, called a state process, exists and the time 
series Yt is an inaccurate observed value of θt, including errors 
(Fig. 5). The inclusion of the auxiliary time series θt based on 
such an assumption allows easier estimation of the probability 
distribution of the time series Yt based on a complex transition 
model.

Fig. 5 State-space model

The formulation for our dynamic linear model is given as 
follows: the observed value Yt is p-dimensional, the state θt is 
q-dimensional, and the initial value θ0 follows Nq (m0, C0), a 
q-dimensional Gaussian distribution with the mean m0 and 
covariance C0. When t ≥ 1, Yt and θt are respectively given as 
follows:
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where Ft and Gt are called an observation matrix and a transition 
matrix, respectively; the former is a map associated with the 
observation θt → Yt at time t, and the latter is a map associated 
with the state transition from the preceding time, θt－1 → θt (the 
former and the latter are a p-by-q matrix and a q-by-q matrix, 
respectively). Meanwhile, vt is an error (system error) occurring 
during the state transition θt－1→ θt, and wt is an error (observed 
error) occurring during the θt observation θt → Yt; it is assumed 
that they are random variables that follow a multi-dimensional 
Gaussian distribution with mean 0 and covariance Vt and Wt, 
respectively. Any random variable expressed as the sum of a 
Gaussian distribution follows a Gaussian distribution. Hence, it 
must be noted that Yt and θt follow a p-dimensional dimensional 
Gaussian distribution and a q-dimensional Gaussian distribution, 
respectively.

Model learning occurs as a process that selects the 
parameters, means and variances of the Gaussian distributions 
that the above Yt and θt follow, so that observed data will be well 

represented. While there are several methods available for 
parameterestimation, a maximum likelihood estimation is often 
performed using a whole set of data. Therefore, a process is 
presented here which uses maximum likelihood estimation to 
identify the parameters of a model.

Let us assume here that there are random variables Y1, ..., Yn 
that n observed values follow and that their distributions are 
dependent on an unknown parameter ψ. When y1, ..., yn are 
obtained as observed values, the likelihood function L can be 
expressed as L(ψ) = p(y1, ..., yn; ψ) using the joint probability 
density of the observed values. Here, the joint probability 
density function of the observed values can be expressed as 
follows:

 p y y p y yn t t
t

n

( , , ; ) ( | ; ):1 1 1

1

 ψ ψ= −
=

∏  (3)

On the other hand, when the right-side term is the probability 
density of Gaussian distribution, its mean ft and variance Qt can 
be used to express the log likelihood ℓ as follows:
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where ft and Qt are dependent on ψ. The most likely value of 
the unknown parameter arg max ( ).ψ ψ

ψ
=  can be obtained by numerically 

calculating ψ that maximizes ℓ (ψ). This means the following:

 arg max ( ).ψ ψ
ψ

= 

 (5)

3.3 Formulation for the dynamic linear model
Taking into consideration the call volume characteristics 
explained in Chapter 2, we created a call volume forecasting 
model based on the following idea:

First, let us assume that each expected intraday call volume is 
obtained by the expected base weekday call volume added or 
subtracted with the difference due to one of the fluctuation 
factors shown in Fig. 1. In addition, the expected weekday call 
volume and the magnitude of the difference due to the 
fluctuation factors are assumed to show random changes from 
day to day. Moreover, the actually observed call volume is 
assumed to be this expected value added with random 
deviations.

Let us assume then that each intraday call volume, the 
magnitude of increase or decrease due to fluctuation factors, and 
the magnitude of their intraday fluctuations respectively follow 
Gaussian distributions. Then, this model is formulated as below 
within the framework of dynamic linear models:

 
Y F vt t t

dtype
t
dtype

t
dtype

t
dtype

t
d
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=
≠

−

∑θ θ

θ θ

Weekday

Weekday

,

1
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t
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 (6)
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where the call volume to be predicted is Yt while the base 
weekday call volume and the difference due to a fluctuation 
factor are expressed by θt

dtype. Note, however, that dtype is an 
attribute flag of the date, which takes a value corresponding to 
either a weekday or one of the nine fluctuation factors shown in 
Table 1. Meanwhile, Ft

dtype is a variable that takes either 1 when 
the date t is dtype or 0 in other cases, while vt and wt

dtype are an 
observed error and a system error, both of which follow a 
Gaussian distribution with mean 0. For the variance of the 
Gaussian distribution that the observed and system errors of this 
model follow, maximum likelihood estimations were performed 
based on the data for the period from April 1, 2015, to March 
31, 2018 (Table 2). Based on the results of these estimations, 
the final version of forecasting model was obtained.

It should be noted that the increase in the variance of the 
system error causes a proportional decrease in the forecast 
accuracy for the corresponding fluctuation factor, thereby 
suggesting the possibility that the actual value may significantly 
deviate from the forecast value. Hence, the forecast accuracy 
will be useful as, for example, an indicator for determining the 
adequacy of a selected fluctuation factor.

Table 2 Estimated variance values for observed and system errors

dtype Value

wt
dtype

Weekday 6.6

Saturday 0.9

Sunday or holiday 1.1

Year-opening business day 16.0

Year-end business days 0.0

End of each month 12.1

Payday 0.3

Pension payment day 0.0

Day immediately before consecutive holidays 910.5

Day immediately after consecutive holidays 0.0

vt — 1815.3

4. Test results
As explained in Chapter 2, our call centers receive ATM 
terminal-related inquiries from financial institutions. For the call 
volume data of this kind, we made forecasts using the model 
presented in Section 3.3. While the purpose of call volume 
forecasting is to optimize the work shift of operators, the work 
shift is usually determined at the latest several weeks before the 
beginning of the relevant month. Therefore, it is necessary to 
predict the call volume up to several weeks ahead when the 
work shift comes under consideration. In this paper, the results 
of call volume forecasts up to two months ahead are presented 
to suit the operations at OFE.

4.1 Results of two-month ahead forecasts
Fig. 6 compares the actual and predicted call volumes during 
the period from April 1, 2018, to June 30, 2018. Note here that 
a forecast was made for each month based on the data covering 
the period up to the last day of the second prior month to the 
relevant month (e.g.: the call volume forecast for the period 
from April 1 to 30, 2018, is based on the data for the period up 
to February 28, 2018). As shown in Table 3, 76 percent of the 
total call volume fell within a 68-percent confidence interval 
and 98 percent fell within a 95-percent confidence interval, thus 
indicating the validity of the forecast results.

In a dynamic linear model-based forecast, forecast values are 
given in the form of a probability distribution. Hence, a high 
risk of low forecast certainty due to large errors is made visible 
in the form of a higher variance of forecast values spread thinly 
in a wider confidence interval. As can be seen in Table 2, in the 
case of the model applied this time, the forecast values for 
increases and decreases due to a factor (day immediately before 
consecutive holidays) show a high variance, which means a 
lower forecast accuracy than on other days. The factors 
considered responsible for the lower forecast accuracy for the 
days immediately before consecutive holidays in the model used 
this time are first the sample size as small as 16 days for the 
days immediately before consecutive holidays, hence and 
second, the strong influence of outliers, and consequently and 
last, insufficient model learning.

Fig. 6 Two months ahead forecast results (April 2018 to June 2018)

Table 3  Distribution of weekday call volumes falling within confidence intervals

Outside 95% 1 day (1.6%)

Within 95%, outside 68% 14 days (22.6%)

Within 68% 47 days (75.8%)

(62 days in total)
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4.2 Comparison with multiple regression model-based 
forecasts

We also created a multiple regression model for use with the 
same fluctuation factors as those used in the dynamic linear 
model. This multiple regression model was intended as a 
baseline for comparison of the forecast results for the same 
data. While the dynamic linear model was designed for 
distribution estimation, the multiple regression model was 
designed for point estimation. Therefore, only predicted means 
were used for comparison. As in Fig. 7, the two models each 
showed forecast results generally similar to those of the other. 
Yet, a comparative evaluation of the forecast and actual results 
in terms of their mean squared errors revealed a 30-percent 
decrease from 3435.0 in the multiple regression model-based 
forecasts to 2389.9 in the dynamic linear model-based forecasts. 
Thus, even an evaluation only in terms of the point forecast 
accuracy confirmed that the dynamic linear model equals or 
outperforms the multiple regression model. It should be noted 
that on the whole, the multiple regression model predicted 
slightly larger call volumes than the dynamic linear model. This 
is due to the influence of the difference between the dynamic 
linear model that updates the mean θt

weekday call volume one by 
one and the multiple regression model that performs estimation 
from the whole input data set with a fixed mean call volume. As 
can be seen in Fig. 1, the volume of calls received at OFE has 
been gradually decreasing since around 2015. Accordingly, 
mean values estimated from the whole input data set will 
become somewhat large due to the influence of past data with 
large call volumes.

Fig. 7 Two months ahead forecast results (April 2018 to June 2018)

4.3 Operator deployment optimization based on call volume 
forecasts

The purpose of call volume forecasting is to calculate the 
number of required operators and optimize operator 

deployment. Hence, we evaluated the effectiveness of call 
volume forecasts in terms of the magnitude of the difference 
between the number of required operators calculated from the 
predicted call volume and the optimal number of operators.

At OFE, the ratio of the volume of calls effectively answered 
within a specified number of seconds to the total volume of 
received calls is used as one of the service quality indicators. 
When calculating the number of required operators, the 
minimum number of operators is determined in such a manner 
that this indicator will exceed the predetermined level. Then, the 
number of operators thus determined is used. This indicator is 
calculated, using the Erlang C formula4) based on the number of 
operators N, the mean call volume per unit time λ, the mean 
time required per call (talk time + post-processing time) μ－1, 
and the above-mentioned specified number of seconds 
(acceptable waiting time (AWT)). We assume here an M/M/C 
queuing model in which calls occur in Poisson arrivals, and the 
service time follows an exponential distribution. While the 
operator deployment takes into consideration the fact that the 
call volume varies from one time band to another2), this paper 
assumes for computational simplicity that the mean call volume 
per unit time remains constant all day long.

For each of the weekdays in April, May, and June 2018 (62 
days in total), the number of required operators calculated from 
the actual intraday call volume was regarded as the optimal 
number of operators and compared with the number of required 
operators calculated from the predicted call volume to 
determine the degree of overstaffing or understaffing. The results 
of this comparison are summarized in Table 4. Put simply, it can 
be said that the forecast accuracy increases with the increase in 
the number of days in the ±0-person line highlighted in the 
table and with the decrease in the number of days in the other 
lines. For the parameters μ－1 and AWT, the values in actual use 
at OFE were used for calculation.

Using the conventional method in which the OFE staff relies 
on their experience and hunch to correct the past mean call 
volume, we predicted the call volume and compared the number 
of operators calculated using this predicted value with that 
calculated from the call volume predicted with the dynamic 
linear model. The comparison found that the number of days 
more overstaffed by one or more operators than the optimal 
number of operators decreased by 39 percent from 28 days to 
17 days and that the number of days understaffed by one or 
more operators also decreased, albeit slightly, from 9 days to 8 
days. Only excessive deployment of operators was reduced 
without compromising service quality. Hence, it can be said that 
a proper deployment of operators was achieved.

A comparison with the multiple regression model-based 

YAMAMOTO Kiwamu et al. Forecasting call arrivals at call center using dynamic linear model

6



YAMAMOTO Kiwamu et al. Forecasting call arrivals at call center using dynamic linear model

forecast results in terms of the number of operators reveals that 
the number of days overstaffed by one or more operators 
decreased by 29 percent from 24 days to 17 days whereas the 
number of days understaffed by one or more operators slightly 
increased from 8 days to 9 days. Although it is difficult to make 
a simple comparative judgment from this result, the staff 
deployment based on our method seems to be at least 
comparable with or better than that achievable by multiple 
regression model-based forecasting.

Table 4  Frequencies of occurrences of overstaffing and understaffing relative to 
the optimal number of operators

Overstaffed/
understaffed by OFE calculation Multiple 

regression model
Proposed 
method

−2 persons 1 day 1 day 1 day

−1 person 9 days 7 days 8 days

±0 persons 24 days 30 days 36 days

+1 person 26 days 23 days 17 days

+2 persons 2 days 1 day 0 days

(62 days in total)

5. Conclusion
This paper proposed a call volume forecast method based on a 
dynamic linear model. This dynamic linear model could flexibly 
handle the gradual fluctuations of call volume data with peculiar 
fluctuations encountered only under certain conditions.

For our test, we created a forecasting model for ATM-related 
call volume data handled at the call centers under the OMRON 
Field Engineering Group and examined the forecast results. The 
examination results revealed the following: our forecast results 
were valid with 76 percent of the actual call volume falling 
within a 68-percent confidence interval and 98 percent within a 
95-percent confidence interval; a high forecast accuracy was 
achieved with the mean squared error lower by 30 percent than 
in the forecast made using the multiple regression model as the 
baseline; and an improved forecast accuracy effectively reduced 
excessive deployment of operators by 39 percent.

The call centers under the OMRON Field Engineering Group 
have spent approximately one day a month in manually 
performing call volume forecasting and developing operator 
deployment plans. The introduction of the forecasting method 
based on our dynamic linear model into this process allows a 
more appropriate deployment of operators and contributes to a 
significant reduction in workload. Currently, an experimental 
implementation is underway of a forecasting system based on 
our dynamic linear model, and its effectiveness has actually 
been confirmed.

Our method does not limit itself to call volume forecasting at 
call centers but allows its application to making various time-
series data forecasts. For example, non-stationary time series 

with a moving mean over time, which are difficult to handle 
with general time-series models, such as ARIMA models, or 
multiple regression models, our method particularly well serves 
the forecasting needs in such cases. There must be various data 
with similar characteristics. Among such data may be customer 
visit volumes and sales volumes at shops and stores and road 
and other traffic time series. We would like to apply our method 
to such data forecasts.

Examples of the remaining challenges for our method are as 
follows: reviewing its structure or parameter update method to 
achieve higher forecast accuracy and devising a method of 
performing automatic identification and selection of fluctuation 
factors without assuming reliance on human knowledge5).
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