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Generation of anomaly detection models at manufacturing site
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In recent years, the need has continually risen for the introduction of AI and the internet of things (IoT) on 
manufacturing floors. It allows manufacturers to contain the impact of skilled worker shortages and surging labor 
costs, while simultaneously increasing equipment utilization and achieving stable production of quality products. 
OMRON has developed a machine automation controller equipped with a machine learning artificial intelligence 
(AI) algorithm.

Conventionally, in order to realize anomaly detection of a machine, it was necessary to analyze data based on 
the cause-effect relation of the device, and to generate an anomaly detection model by data scientists. Dependence 
on individual skills is an issue to be solved. In order to solve the issue, we have developed tools to realize 
automatic generation of an anomaly detection model by utilizing a machine learning algorithm.

1. Introduction
Recently, the manufacturing sector has been undergoing a rapid 
shift toward multi-product small-lot production and optimally 
located global production. Meanwhile, manufacturers are trying 
to improve equipment availability and continue the stable 
production of high-quality products while reducing the impact 
of skilled worker shortages and rising labor costs. Thus, needs 
have been increasing for AI and Internet-of-things (IoT) 
technologies on shop floors.

OMRON has developed an AI-equipped machine automation 
controller (hereafter “AI Controller”) as an example of an AI 
technology application. An AI Controller controls a machine or 
line safely before an anomaly occurs by monitoring the 
constantly changing line/machine conditions in real-time 
microseconds, and predicts “unusual behaviors” of the machine 
or line on the basis of an “anomaly detection model” learned by 
its built-in AI.1)-3)

To make anomaly detection and predictive maintenance 
available on the shop floor, a clear understanding of the cause-
and-effect relationship between manufacturing machine 
anomalies and measurable sensor data is necessary. The 
problem at present is that it takes time to acquire statistical 
processing skills and to perform various necessary analyses.

Moreover, shop-floor engineers, who operate AI Controllers, 
tend and prefer to place importance on clear traceability of the 
generation process of any anomaly detection model.

With such issues and operator preferences in mind, we 
examined a tool that automatically generates anomaly detection 
models necessary for an AI Controller. The following presents 
the results of our investigation.

2. Problem set
2.1 Flow of AI Controller-based anomaly detection
An AI Controller detects anomalies in real-time control data 
(servo motor torque values, fiber optic sensor logic signals, etc.) 
on various programmable logic controller (PLC)-controlled 
devices for repetitive cycle manufacturing machinery. As shown 
in Fig. 1, the AI Controller-based anomaly detection process 
starts with dividing the collected machine control data into 
production cycle units (takt times, cycles, etc.). Then, the AI 
Controller calculates the feature quantities for the waveforms 
corresponding to the divided intervals. The AI Controller can 
handle six different types of feature quantities (average, 
standard deviation, skewness, kurtosis, maximum, and 
minimum) as distribution pattern attributes and hence can obtain 
up to 6 feature quantities per waveform. The feature quantities 
thus obtained are then subjected to Isolation Forest (hereafter 
“I-Forest”)4), a type of anomaly detection algorithm, to obtain 
scores indicative of the degree of anomaly (hereafter “anomaly 
scores”) as the results. Finally, the AI Controller makes a 
threshold judgment for each anomaly score to determine the 
occurrence of an anomaly during the production cycle unit time.
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Fig. 1 AI Controller-based anomaly detection method

Using this anomaly detection method, the AI Controller 
provides high detection performance and high-speed 
processing.5),6) To make this anomaly detection method work in 
practice, however, the following two steps must be taken 
beforehand:

A) Selection of variables and feature quantities useful for 
anomaly detection; and

B) Threshold setting.
Accordingly, the AI Controller operator performs a three-

phase process consisting of data collection, analysis, and 
utilizing, as shown in Fig. 2, to enable anomaly detection.

Fig. 2 Anomaly detection process performed by AI Controller

The AI Controllerʼs model generation tool described herein is 
used at the analysis phase of this process and has the role of 

generating an anomaly detection model from the machine 
control data collected at the data collection phase.

2.2  Realization of shop-floor anomaly detection model
To make anomaly detection work on the shop floor, one must 
know the cause-and-effect relationship between machine 
anomaly-inducing events and measurable sensor data. 
Conventionally, this prerequisite could only be met through a 
time-consuming, complicated statistical analysis process in 
which various data are repetitively processed and analyzed, 
including manual trial and error, on the basis of the knowledge 
and expertise specific to the manufacturing machine until the 
cause-and-effect relationship with the machine becomes clear to 
the data scientist. In addition, there are other problems such as: 
critical information hidden in data that may be overlooked 
owing to improper use of an analysis technique(s); or inaccurate 
analysis results may be derived owing to insufficient 
consideration of the behavior of the machine concerned. Thus, 
the accuracy of analysis results depends on the level of 
expertise of the data scientist involved.

Generally speaking, to obtain from available data a required 
anomaly detection model reflecting a cause-and-effect 
relationship, the KDD (Knowledge Discovery in Databases)7) 
process shown in Fig. 3 must be repeated many times by highly 
specialist data scientists.

Fig. 3 KDD process

The AI Controller may also be operated by machine 
maintenance personnel and hence must allow those unfamiliar 
with statistical processing to create optimal anomaly detection 
models through a small number of steps. Therefore, the key is 
how easily this KDD process can be performed.
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In the AI Controller-based anomaly detection process 
mentioned above, our model generation tool performs the 
analysis phase and generates a required anomaly detection 
model from pre-collected control data. To realize the flow of 
this analysis phase using the model generation tool, we 
modified the analysis flow to suit the KDD process, so that we 
could provide the maximum level of automation for the easy 
execution of individual processes.

An automated analysis phase, however, would make the 
model generation process opaque and might not be well-
received where the shop floor wants the generation process to be 
transparent. To satisfy these mutually contradictory needs, we 
solved the following challenges:

1. Analysis phase automation by model generation tool
2. Anomaly detection user interface (UI) more explanatory of 

model generation process
The technology developed to solve these two challenges is 

described in the next and subsequent chapters.

3. Technical details
3.1 Automated analysis phase
We automated the processes (data cleansing, feature quantity 
calculation, feature quantity selection, and threshold setting) 
performed by the anomaly detection model generation tool in 
the analysis phase to eliminate dependence on individual skills 
in the analysis phase. The specifics are as follows:

A) Data cleansing
Data obviously unusable for analysis (missing values and 
zero-variance data) are eliminated from the collected data 
set.

B) Feature quantity calculation
As explained in 2.1, the AI Controller can handle six 
different types of feature quantities. The anomaly 
detection model generation tool automatically calculates 
all these feature quantities for the waveform of each 
collected data item.

C) Feature quantity selection
Decision tree8) and logistic-regression8) are used as 
variable selection methods to efficiently search for feature 
quantities suitable for inlier/outlier discrimination.

Fig. 4 shows the flow of feature quantity selection:

Fig. 4 Flow of feature quantity selection

First, using inlier/outlier labels assigned to the collected data 
items as target variables and all obtained feature quantities as 
explanatory variables, the decision tree and logistic regression 
methods are executed to calculate the importance of each 
feature quantity (a measure for determining the suitability for 
inlier/outlier discrimination). These two analysis methods select 
high-importance feature quantities from all obtained feature 
quantities to narrow down the list of feature quantities.

A decision tree is a machine learning tool that uses a tree 
structure to perform classification or run a regression. Its 
advantage is its applicability to non-linear problems. The 
importance value determined by the decision tree in our 
technique is the difference in the Gini coefficient of each 
feature quantity between before and after discrimination. The 
magnitude of this value is the proportional indicator of the 
suitability of a feature quantity for use as an inlier/outlier 
discrimination variable.

A logistic regression is a regression to a logistic function that 
takes a value between 0 and 1. In our technique, the algorithm 
is applied to each variable one by one. In addition, the 
likelihood of a good fit to a response variable (=inlier/outlier 
label) is interpreted as importance value, the magnitude of 
which is the proportional indicator of the suitability for use as 
an inlier/outlier discrimination variable. Being applied to each 
variable one by one, our algorithm has the advantage of being 
highly explainable, but the disadvantage of non-applicability to 
non-linear problems.

We combined these two variable selection methods, mutually 
different in strengths and weaknesses, into an unbiased method 
of narrowing down feature quantities.

I-Forest, which is adopted as the anomaly detection algorithm 
of the AI Controller, is then applied to search for the 
combination of feature quantities actually having the highest 
discrimination ability. All combinations of the feature quantities 
selected by the decision tree and logistic regression in the 
preceding step are exhaustively examined to measure their 
discrimination ability at the time of the application of I-Forest. 
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Area under the Curve (AUC)9) is adopted here as the indicator 
of the modelʼs discrimination ability. AUC here means the area 
under an ROC curve. An ROC curve is a plot of changes in the 
relationship that occur between the false positive rate 
(probability of false-positive anomaly detection) and the true 
positive rate (probability of true-positive anomaly detection) as 
the threshold is changed. A model with high discrimination 
ability is understood as one with a high true positive rate at 
points where the false positive rate is low. The indicator based 
on this idea is AUC. Our technique runs an exhaustive search to 
identify the combination of feature quantities with the highest 
AUC and uses it as a variable for the anomaly detection model, 
thereby providing a method of automatic search.

D) Threshold setting
The point with the highest correct detection rate (ratio of 
correct inlier/outlier discriminations) is set as the initial 
threshold value.

Thus, a method is now made available for automatically 
generating anomaly detection models with high discrimination 
ability by running the above Steps A) to D) on a collected data 
set.

3.2 UI more explanatory of model generation process
Through the efforts described in 3.1, we successfully automated 
the anomaly detection model generation process. This 
automation, however, resulted in a new problem, the loss of 
transparency of the model generation process. Accordingly, we 
added the following improvements to the model generation tool 
to make the model generation process more explainable.

The first is an improvement made to the operation flow. 
More specifically, a prompt was included to appear at the final 
step in the automatic anomaly detection model generation 
process to ask the user to check the generated model for its 
discrimination ability, the selected combination of feature 
quantities, and the set threshold. We also made it possible for 
the user to go backward through the individual steps of the 
anomaly detection model generation process to check the details 
or history of the process, if unsure about the modelʼs 
discrimination ability or the selected feature quantities, and to 
adjust the settings, if not convinced of them.

Fig. 5 shows a typical screenshot of the model generation 
tool. This tool is equipped with: a navigation bar for moving 
through each step of anomaly detection model generation; a 
screen for checking the current anomaly detection model for its 
discrimination ability and its content, i.e., the combination of 
feature quantities and the threshold; and an operation history 
check screen. With the above operation flow and UI, the user 
can check what processing occurred at which step of the 

anomaly detection model generation process and can check the 
ultimately generated model for its discrimination ability and 
content (combination of feature quantities and threshold). Thus, 
we consider that the tool makes the model generation process 
more explainable.

Another improvement is that more than one indicator of the 
modelʼs discrimination ability was provided to make it easier to 
change the combination of feature quantities or adjust the 
threshold.

Fig. 6 Anomaly detection model setup tool (threshold adjustment screen)

Fig. 6 shows a typical screenshot of the screen for checking 
the current anomaly detection model for its discrimination 
ability. The plot in the center shows the relationship between the 
anomaly scores and the threshold. Meanwhile, the upper and 
bottom parts of the screen contain the false-positive and false-
negative detection rates as well as the correct detection rate to 
help check in detail the discrimination ability of the current 
anomaly detection model. The false-positive detection rate 
indicates the ratio of inliers falsely determined as outliers, 
whereas the false-negative detection rate shows the ratio of 
outliers falsely determined as inliers. Each circle (○) on the 
plot represents an inlier, while each cross (×) represents an 
outlier. The case shown in Fig. 6 contains points representing 
data items incorrectly discriminated by the threshold.

There are some shop floors where false-negative (missed) 
detections are not tolerated. On the other hand, there are also 

Fig. 5 Typical screenshot of model generation tool
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shop floors where the concern is that frequent false-positive 
(phantom) detections may result in operators reluctant to trust 
monitoring results.

Sometimes, the results of a generated anomaly detection 
model may contain overlaps of inlier and outlier regions as in 
Fig. 6, thereby making complete discrimination impossible. In 
such cases, the three indicators of discrimination ability should 
be checked to make adjustments reflecting shop-floor 
judgements.

4.  Verification test
This chapter uses as an example an Omron-manufactured PLC-
controlled horizontal pillow packing machine (Fig. 7) to 
describe the results of an on-site verification test on the model 
generation function of the model generation tool. Horizontal 
pillow packing is a method of wrapping products with a 
wrapping material such as resin film into pillow-like forms. 
General speaking, a horizontal pillow packing machine mainly 
consists of the following four functions: wrapping material 
feeding; product feeding; wrapping of products and heat-sealing 
of wrapping bodies; and heat-sealing and cutting of wrapping 
ends. These functions are performed by servo motors installed 
in the packing machine. The failure event most likely to occur 
to this horizontal pillow packing machine is foreign matter 
inclusions. Hence, we selected this event for our verification 
test. Foreign matter inclusions are anomalies that occur as 
incomplete sealing owing to foreign material included into the 
heat-sealed seam(s) of the wrapping material. This problem is 
serious enough to significantly affect product quality.

Fig. 7 Horizontal pillow packing machine

The AI Controller installed in the packing machine collects 
measured values of the torque, velocity, and location of each of 
the four servo motors (on the conveyor shaft, film feed main 
shaft, and sub-shaft, and top seal shaft) at a constant cycle (2 
ms) while receiving logical signals from the three fiber optic 
sensors every 2 ms. When performing wrapping at the rate of 
one item per second, the AI Controller collects 500 samples 
worth of data per package. Fig. 8 shows parts of the torque and 
velocity data collected from the servo motors.

Fig. 8 Collected data (top seal shaft torque and velocity)

These collected data are entered into the model generation 
tool to generate an anomaly detection model. Obtained first are 
feature-quantity data in up to 90 dimensional spaces, which are 
calculated from a collected data set (collected data in up to 15 
dimensional spaces ×6 different types of feature quantities).

Fig. 9 Feature-quantity data

Fig. 9 shows the time series plots (Y axis=feature quantities; 
X axis=elapsed time) for 6 different types of feature-quantity 
data obtained from the measured values of the top seal shaft 
torque. Each circle (○) on the plot represents an inlier, while 
each cross represents an outlier (×).

Feature quantities useful for anomaly detection are then 
selected from the feature-quantity data in up to 90 dimensional 
spaces, obtained by feature quantity calculation. Table 1 shows 
the importance (likelihood) of each of the feature quantities 
calculated by the model generation tool. The suitability of each 
feature quantity for inlier/outlier discrimination increases with 
the importance (likelihood) in the decision tree and logistic 
regression columns.

The results in Table 1 reveal that the average and standard 

5



deviation of the top seal shaft torque and the maximum value of 
the top seal shaft velocity are the variables most useful for 
anomaly detection. As is clear from the plots shown above in 
Fig. 9 for the feature quantities, the average values of the top 
seal shaft torque are divided into an inlier region and an outlier 
region. This also indicates that the average of the top seal shaft 
torque is useful for anomaly detection.

Table 1 Importance of individual feature quantities

Name of feature quantity
Importance (likelihood)

Decision tree Logistic regression

Average of top seal shaft torque 67.1 0

Std deviation of top seal shaft torque 67.1 0

Max. of top seal shaft velocity 67.1 0

Max. of top seal shaft torque 63.2 −6.13

Kurtosis of top seal shaft torque 61.2 −7.79

Finally, the anomaly detection algorithm (I-Forest) is actually 
applied to the high-importance feature quantities to select the 
combination of feature quantities likely to achieve the highest 
anomaly detection accuracy; and then the threshold is set. Fig. 
10 is a screenshot of the screen that shows that the ultimately 
selected combination of feature quantities, the results of 
threshold setting, the behavior of the corresponding anomaly 
scores, and the discrimination performance values.

Fig. 10 Anomaly scores (I-Forest)

The checked items in the variable list on the left side of the 
screen are the selected feature quantities. The average and 
standard deviation of the top seal shaft torque are shown 
selected in the above screenshot. The graph pane on the right 
side of the screen shows the anomaly scores calculated by 
I-Forest (circles (○) and crosses (×) representing inliers and 
outliers, respectively, as in Fig. 9) and the threshold (red 
straight line). One can see that the threshold is set at a point 
where the correct detection rate, the false-negative detection 
rate, and the false-positive detection rate are 100%, 0%, and 
0%, respectively. These results verify that the model is 
generated properly.

The ultimately selected feature quantities are the average and 
standard deviation of the top seal shaft torque. The reason is 
that the combination of these two feature quantities results in a 

correct detection rate of 100%. Among the high-importance 
feature quantities, the maximum value of the top seal shaft 
velocity and the variables thereafter are not adopted.

5. Conclusion
This paper examined a tool used to generate anomaly detection 
models necessary for an AI Controller. It also explored a 
technique that can automate anomaly detection model 
generation and another technique that can make model 
generation process more explainable.

Accordingly, we conducted a verification test on the tool, 
using the packing machine described in Section 4. The test 
demonstrated that the tool can automatically generate proper 
anomaly detection models, the discrimination performance of 
which was a correct detection rate of 100%.

This anomaly detection model generation tool has been used 
by our in-house engineers for verification. This tool has been 
well received for its performance in anomaly detection model 
generation and for its operational advantages, such as model 
generation process traceability and a user interface for adjusting 
thresholds and selected feature quantities.

Our technique uses decision tree and logistic regression to 
automate the feature quantity selection process for anomaly 
detection model generation. Results thus derived are, however, 
entirely dependent on collected data. Hence, a real cause-and-
effect relationship with a machine may be better reflected by 
feature quantities other than the selected ones. It is difficult for 
our current tool to generate models representing a real cause-
and-effect relationship with a machine as long as its algorithms 
depend entirely on data for anomaly detection model generation. 
In the future, we intend to use shop-floor information and other 
non-digital data to identify cause-and-effect relationships more 
consistent with shop-floor knowledge and to further improve the 
anomaly detection model generation process.
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