
HANZAWA Yuki et al. AI Visual Inspection System

Contact : HANZAWA Yuki yuki.hanzawa@omron.com
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Defect Detection using Deep Learning
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In this paper, we propose a technique to detect various defects in uniform background objects (hairline, satin, etc.) 
in visual inspection system. “Human resources shortage” and “ diversification of consumer needs” have emerged 
recently in the field of manufacturing, and the demands for the autonomous visual inspection system are 
increasing. The existing inspection system, however, cannot adapt to a wide variety of objects / defect types. We 
built Deep Learning model that learns a variety of defect types in advance, thereby constructing a defect detection 
system that enables anyone to automatically perform inspection like human eye without any complicated setup. In 
addition, without introducing high-cost computing resources such as GPU, it can be feasible on existing vision 
system by highly optimizing for modern CPU.

1. Introduction
1.1 Background
In the field of manufacturing, human resource shortages and 
diversification of customer needs have become more diversified, 
and demand for automatization of visual inspection systems has 
been increasing. Existing image sensors, however, have only 
made part of the automatization of inspection processes feasible. 
The causes include the following: such sensors cannot adapt to 
diverse materials and shapes for the objects to be inspected 
owing to a wide variety of objects to be manufactured; and 
adjustment is not possible unless sophisticated expert 
knowledge is available. To this end, our goal is to achieve 
automated visual inspection technology that satisfies the 
requirement to be applicable to a wide variety of objects and 
defect types and can be setup easily by anyone for 
the automatization of inspection processes.

To deal with a variety of objects and defect types, the 
algorithm to detect defects, input (lighting/imaging) 
technologies that highlight defects, and the driving technology 
to adapt to object profiles are necessary. In this paper, we 
propose a defect detection algorithm for the detection of diverse 
defects.

1.2 Proposal for pre-training type defect detection using 
deep learning

Under the circumstances where the deep learning method brings 
results in a variety of image analyses, the bottleneck is the 
collection of images. For practical realization of deep learning 
for visual inspections, the collection of images used for learning 

will constitute a great burden for fieldworkers, thereby making 
it difficult to secure a sufficient number of learning images when 
starting the product line. In this paper, to resolve the problem, 
we propose the automatization of visual inspections wherein the 
pre-training type algorithm that does not require preparation of 
learning images for each product line is applied.

In the visual inspection, it is necessary to detect only defects 
from a small or weak difference in a variety of object surfaces 
and defect types. The objects and defect types subject to visual 
inspection can be classified as shown in Table 1. Out of the 
classified inspections, the inspection that has been put into 
practical use with existing image sensors is limited to salient 
defect inspections under a uniform background. On the other 

Table 1  Classification of Objects/Defect Types
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Fig. 1  Outline of Inspection System

Study cases of deep learning for implementing such tasks are 
often based on algorithms that include object detection and 
semantic segmentation to output the processing results1). On the 
other hand, the algorithm proposed in this paper sets out the 
feature map as the final output. The reason for this is that, for 
the actual production sites, the judgment regarding whether 
defects in products are classified as defective products or 
accepted as good products is different for each product line, and 
thus it is necessary to leave room for setting the threshold 
values for the respective lines. The actual operation model 
assumes that the algorithm is used as part of a series of 
inspection flows, after generating the feature map wherein only 
the defective portions are highlighted by the proposed 
algorithm, and on board the image sensor, binarization or 
labeling of simple image processing is applied; thus, the 
acceptance judgment is implemented by using the positions and 
sizes of any defects.

3. Algorithm for generating defect detection
image

In the defect inspections implemented at manufacturing sites, 

the assumption is that objects other than defects may be 
projected in the images, and there may be cases that require 
classification of defects and other objects in the post-processing 
stage. Therefore, it should be so arranged that the positions and 
sizes can be identified by the feature map wherein the likely 
level of a defect is imaged. Preparation of such a feature map 
consists of the two steps shown below (Fig. 2).

(1) Assumption of the probability that a defect is in the
inspection image

(2) Identification and imaging of the estimated position of the
defect

First, for step (1), enter the inspection image into CNN and 
output the possibility that a defect can exist within the image 
with a probability of 0 to 1. CNN is so arranged that it outputs 
high values when patterns that are closer to defects are 
contained in the inspection image by allowing advance learning 
from many defect images.

Next, for step (2), it is determined from which place within 
the inspection image the probability of the defect estimated in 
(1) is derived. With CNN, the information showing the positions
of defects are contained in the calculation results of the
respective intermediate layers2), and by using the information,
the degree of contribution to defect probability can be
calculated in units of inspection image pixels. Finally, the
degree of contribution from each pixel is multiplied by the
adequate magnification ratio, thereby creating the feature map.

Fig. 3 is an example of a feature map. In this illustration, the 
color varies from blue to red as the degree of contribution to 
defect probability becomes higher. It is known in the inspection 
image that the portions where defects exist show higher values.

Fig. 2  Generation Flow of Feature Map
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hand, the algorithm proposed in this paper can be applied to 
small or weak defects in the uniform object. Because a uniform 
object shows similar features even across different product lines, 
the pre-training type algorithm can work well.

2. System outline
Fig. 1 is an illustration of detection processing. The feature map 
expresses the likely level of defects by processing the input 
image with the pre-training type of a convolutional neural 
network (CNN). Thereafter, the feature map thus obtained 
is binarized and extracted as a defect region.
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Fig. 3  Examples of Feature Map

4. Learning image database
To allow the pre-learning type algorithm to exert full 
performance, it is necessary at the time of development to build 
a large database (DB) of learning images that covers a variety 
of objects produced at the manufacturing site. However, since 
the actual product line data are not always saved, and such data 
may often be confidential, data collection for the purpose of 
development use is not easy. In particular, for image data that 
contain defects, there are also problems where the absolute 
number is small and the volume of data for good products is not 
balanced.

As a method for building the DB under the condition where 
images usable for learning can be procured, a method of pseudo 
images generated by computer graphics (CG) or generative 
adversarial network (GAN) are used as the learning images3,4), 
but cases where validity is practically shown in the actual 
environment are rare.

Therefore, referring to the development of the algorithm 
proposed in this paper, patterns of objects where combinations 
of defect types, positions, sizes, colors, background materials, 
and light source setups are included were actually created and 
imaged, thereby building the DB. Fig. 4 shows examples of 
combination patterns actually created.

Fig. 4  Examples of Learning Image

For the processing of learning, images obtained by adding 
data augmentations that included clipping and the addition of 
noise to each image recorded were used after increasing the 
number of images to 8 million. The use of the DB allows the 

algorithm proposed in this paper to handle a variety of objects 
and defect types at the manufacturing sites.

5. Considerations on higher speeds
In general, abundant computational resources from the GPU are 
used to implement deep learning. For image sensors used at the 
manufacturing sites, however, the use of such resources is 
difficult because of such problems as cost. Therefore, to 
improve high-speed performance through processing with a 
CPU, attention focused on the convocation layer that accounted 
for CNN processing time, thereby optimizing the network 
structure and the cord mounting type to the hardware 
configuration of the image sensor. This arrangement realized a 
processing time of 100 ms to 600 ms, depending on the 
resolution of the input image.

5.1 Optimization of network structure
Although several networks of precision deep learning have been 
proposed, many assume the use of a GPU, and the processing 
time of the image sensor in a CPU exceeds 1000 ms in most 
cases. The network adopted for the algorithm proposed in this 
paper is based on ResNet5) or Inception6), which are typical of 
high-precision and high-speed networks for use with 
recognition tasks of general objects. In addition, considering 
that each layer of the network can be handled in combinations 
of a variety of defects and background patterns, it is structured 
to give priority to the versatility of the Effective Receptive 
Field7,8), and diversified high-speed structures9) are featured, 
thereby ensuring both speed and precision at the same time.

5.2 Approximation of kernel
For the convolution operation, the computation amount 
increases in proportion to kernel size, and thus a higher speed 
can be obtained as the kernel size becomes smaller. On the 
other hand, for CNN, the effect equivalent to a convolutional 
layer of a larger-size kernel can be obtained by using multiple 
convolutional layers of a smaller size10). Therefore, we will 
shorten the overall computational time by dividing the 
convolutional layer with a kernel size of NxNxC into the two 
stages comprising the 1xNxC and the Nx1xC stages. (Fig. 5)

Fig. 5  Miniaturization of Kernel of Convolutional Layer
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5.3 Fixed-point representation and utilization of parallel 
operation instruction

Convolution is a product-sum operation of floating-point data 
rows. On the other hand, for the CPU to be adopted for the 
image sensor, it is possible to use the single instruction multiple 
data (SIMD) that executes the product-sum operation of 
multiple data in parallel. In addition, SIMD enables the 
execution of many more parallel operations as the number of 
bits that express the data. Referring to the convolution 
calculation, we will enable the execution of up to 32 parallel 
operations by realizing the 8-bit fixed-point representation of 
inputs and outputs.

6. Performance evaluation
We applied the algorithm proposed in this paper to 466 
inspection images (62 images for good products; 404 images for 
defective products) to evaluate performance. The precision of 
the conventional method used for comparison was calculated by 
optimizing the popular filters, including contrast enhancement 
and edge detection incorporated into the image sensor, for each 
object, thereby extracting the defect regions. Note, however, 
that the images used for evaluation were images wherein the 
imaging environment and imaging objects were different from 
the learning images adopted in this paper.

Table 2 shows the results of the performance evaluation. The 
category “false positive” shows incorrect detection from good 
product images and “false negative” shows non-detection of 
defective product images.

Table 2  Result of Performance Evaluation

false negative false positive

Conventional Method 3.2% 6.7%

Proposed Method 0.9% 3.4%

Both results of false positive and false negative of the 
proposed method revealed higher precision. In addition, while 
the conventional method required the selection of multiple 
filters and adjustment of several parameters for each object, the 
parameters that required adjustments for using the proposed 
method were only threshold values for the feature map and a 
reduction in time and effort for the adjustment work at 
production site could be expected.

Figures 6 and 7 show the extraction result of the defect 
regions from using the proposed algorithm. The first row of the 
figure shows the input images, the second row shows the results 
of the extraction of defect regions from the input images using 
the conventional method incorporated into the image sensor for 
comparison. The final third row shows the extraction results of 

defect regions using the proposed algorithm. Fig. 6 shows the 
results of the case where images contain a pattern similar to the 
learning image, and Fig. 6(a) shows the object wherein the 
satin-finished aluminum is scratched. The width of the scratch 
of approx. 4 pixels was sufficiently fine for the resolution of 
approx. 2000×2000 of the input image where the contrast ratio 
was low, and processing with the conventional method was 
unable to extract the scratch at all. On the other hand, the 
processing result of the proposed algorithm was able to extract 
the scratched region that was not possible with the conventional 
method, and it ignored the shades of lighting showing a much 
greater salient contrast ratio on the image regions adjacent to 
the scratched regions. Fig. 6(b) shows a plastic film with stains 
on it. The film has fine hairlines, and when the image is 
processed with the conventional method, noise derived from the 
hairlines is widespread in the work. In contrast, the processing 
result with the proposed algorithm reveals that the defect 
regions could be extracted more clearly without being affected 
by the hairlines.

Fig. 6  Objects Similar to Learning Image

Fig. 7 shows the output results for objects when there were 
many differences from the learning image and there was 
information on the background region. Fig. 7(a) shows the 
images wherein a cracks is generated on the ferrite core, and an 
image that contained that type of information did not exist in the 
learning image. When processing with the conventional method 
was applied to this image, though extraction of cracked regions 
could be done, the shapes of the ferrite core and edges derived 
from the surface roughness were extracted as well. On the other 
hand, the processing result with the proposed algorithm revealed 
that only the cracked regions were output as the defect regions. 
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Fig. 7(b) shows the image wherein dust exists on the wooden 
smartphone cover. The learning images did not include images 
of wooden objects, and the patterns wherein dust was included 
as defects did not exist because such patterns were not the 
targets in the present development. When processing with the 
conventional method was applied to this object, not only the 
dust, but also the wood patterned parts were extracted with 
similar intensity. On the other hand, treatment with the proposed 
algorithm revealed that, though learning of wood patterns and 
dust had not been made, the dust could be output as defects 
with the wood patterns ignored.

Fig. 7  Objects Showing Many Differences from Learning Image

The results revealed that, while the algorithm proposed in this 
paper was of the pre-learning type, it had the ability to respond 
to unknown patterns that did not exist in the learning images.

7. Conclusion
In this paper, we proposed a pre-training type defect-detection 
algorithm that could handle a variety of objects and defect types. 
Through the proposed method, we verified that the algorithm 
could also handle objects and defects with unknown patterns.

For future prospects, we are examining the combined use 
with more complex technologies for inputs (lighting, imaging), 
driving technologies of robots, and online and additional 
learning to handle objects with more complex designs.
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